独立事件与非独立事件,条件概率


1 独立事件与非独立事件,条件概率

1.0 说明例1的A、B事件是非独立事件

P(A)=\frac{11}{16} ,\ P(B)=\frac{6}{16},\ P(AB)=\frac{4}{16} ,因为P(A)P(B)\ne P(AB),所以事件A、B非独立。

如果把木质 蓝 从7改成6,则有:

p(A)=\frac{10}{15},\ p(B)=\frac{6}{15},\ p(AB)=\frac{4}{15},因为p(A)p(B)= p(AB),所以事件A、B独立。

1.1 条件概率

已知事件B发生的条件下事件A发生的概率称为事件A关于事件B的条件概率,记做P(B|A)。

一般来说,在古典概型下,有

P(A|B)=\frac{the\ samples\ of\ events\ AB}{the\ samples\ of\ event\ B}
=\frac{the\ samples\ of\ events\ AB/all\ samples}{the\ samples\ of\ event\ B/all\ samples}=\frac{P(AB)}{P(B)}

这个式子对几何概率也成立,由此得到如下一般定义:

对任意事件AB,若p(B)\ne0,则“在事件B发生的条件下A的条件概率”,记做P(A|B),定义为P(A|B)=\frac{P(AB)}{P(B)},并得到以下推论:
P(B)\ne0,则P(AB)=P(B)P(A|B)

P(A)\ne0,则P(AB)=P(A)P(B|A)

2 全概率公式,贝叶斯公式

2.1 完备事件组(分割)定义:

若事件组(A_1,...,A_i,...,A_n)满足条件

(1)A_i,\ i=1,...,n两两互不相容,且p(A_i)>0

(2)\sum_{i=1}^nA_i=\Omega

则称(A_1,...,A_i,...,A_n)\Omega 的一个完备事件组,也称是\Omega 的一个分割。

2.2 全概率公式:

设 (A_1,...,A_i,...,A_n)是一个完备事件组,则有

P(B)=\sum_{i=1}^{n}P(A_i)P(B|A_i)

2.3 贝叶斯公式(从条件概率公式与全概率公式导出):

设 (A_1,...,A_i,...,A_n)是一个完备事件组,则有:
P(A_i|B)=\frac{P(A_iB)}{P(B)}=\frac{P(A_i)P(B|A_i)}{\sum_{j=1}^{n}P(A_j)P(B|A_j)}

未完待续...

期待内容:朴素贝叶斯与贝叶斯网络


  • 3
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI算法网奇

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值