复数的物理意义是什么

10人阅读 评论(0) 收藏 举报
分类:
链接:https://www.zhihu.com/question/23234701/answer/26017000


复数最直观的理解就是旋转!

4*i*i = -4

就是“4”在数轴上旋转了180度。

那么4*i就是旋转了90度。

<img src="https://pic2.zhimg.com/50/8307ff7d73681da79ad77cc09e71a28f_hd.jpg" data-rawwidth="1000" data-rawheight="800" class="origin_image zh-lightbox-thumb" width="1000" data-original="https://pic2.zhimg.com/8307ff7d73681da79ad77cc09e71a28f_r.jpg">
另外,e^t是什么样呢?
<img src="https://pic2.zhimg.com/50/67eb5377af1dfca0e2cbea6637076e96_hd.jpg" data-rawwidth="800" data-rawheight="600" class="origin_image zh-lightbox-thumb" width="800" data-original="https://pic2.zhimg.com/67eb5377af1dfca0e2cbea6637076e96_r.jpg">但当你在指数上加上i之后呢?
<img src="https://pic4.zhimg.com/50/3af2b68b0bc9802a3cce9d6f56f3bbf1_hd.jpg" data-rawwidth="2000" data-rawheight="999" class="origin_image zh-lightbox-thumb" width="2000" data-original="https://pic4.zhimg.com/3af2b68b0bc9802a3cce9d6f56f3bbf1_r.jpg">变成了一个螺旋线。是不是和电磁场很像?(想拿欧拉公式去跟女生炫学术的男生注意了:她们,真的,不CARE)

当然,更重要的意义在于复数运算保留了二维信息。

假如我让你计算3+5,虽然你可以轻松的计算出8,但是如果让你分解8你会有无数种分解的方法,3和5原始在各自维度上的信息被覆盖了。
但是计算3+5i的话,你依然可以分解出实部和虚部,就像上图那样。

基于以上两个理由,用复数来描述电场与磁场简直完美到爆棚!
我们即可以让电场强度与复数磁场强度相加而不损失各自的信息,又满足了电场与磁场90度垂直的要求。另外,一旦我们需要让任何一个场旋转90度,只要乘一个“i”就可以了

<img src="https://pic2.zhimg.com/50/78ed7fd1c151b358445ef5697af9c6b0_hd.jpg" data-rawwidth="426" data-rawheight="457" class="origin_image zh-lightbox-thumb" width="426" data-original="https://pic2.zhimg.com/78ed7fd1c151b358445ef5697af9c6b0_r.jpg">

答案的提醒,再补充一点。
正弦波在频域可以看作是自然数中的“1”,可以构成其他数字的基础元素。当你需要5的时候,你可以看成是1*5(基础元素的五倍)也看以看成2+3(一个基础元素2倍与基础元素3倍的和)。这些用基础元素构成新元素的运算是线性运算。
但是现在你如何用线性运算吧2sin(wt)变换成4sin(wt+pi/6)呢?

利用欧拉公式,我们可以将任何一个正弦波看作其在实轴上的投影。假如两个不同的正弦波,可以用数学表达为:

<img src="https://pic1.zhimg.com/50/e12595ebb6cb8f04e8b066488843ea64_hd.jpg" data-rawwidth="48" data-rawheight="60" class="content_image" width="48">
好了,现在如果我想用第一个正弦波利用线性变换为第二个,我们就只需要将A乘对应的系数使其放大至B(本例为乘2),然后将θ1加上一定的角度使其变为θ2(本例为加30度),然后将得到的第二个虚数重新投影回实轴,就完成了在实数中完全无法做到的变换。

这种利用复指数来计算正弦波的方法也对电磁波极其适用,因为电磁波都是正弦波,当我们需要一个电磁波在时间上延迟/提前,或是在空间上前移/后移,只需要乘一个复指数就可以完成对相位的调整了。



(图1图3系自制,转载不注明出处注定一辈子学理工没女朋友)

题主关注我的专栏吧,近期会写科普傅里叶的东西……与时间无关的故事 - 知乎专栏
查看评论

【数学】复数的物理意义是什么?

作者:Heinrich 链接:https://www.zhihu.com/question/23234701/answer/26017000 来源:知乎 著作权归作者所有。商业转载请联系作者获得...
  • zj360202
  • zj360202
  • 2018-01-11 15:24:54
  • 122

复数的物理意义是什么?

复数最直观的理解就是旋转! 4*i*i = -4 就是“4”在数轴上旋转了180度。 那么4*i就是旋转了90度。 另外,e^t是什么样呢? 但当你在指数上加上i之后呢?但当你在指数上加...
  • datase
  • datase
  • 2017-05-25 21:31:55
  • 105

复数信号的物理意义

1.之所以引入复信号[有虚部],并不是因为实际存在复信号;如同δ函数一样,实际并不存在,但是作为数学分析的角度,引入后能方便分析信号。而傅里叶级数的指数形式和傅里叶变换,都是把信号分解为e^jwt的组...
  • a7458969
  • a7458969
  • 2011-09-07 17:00:23
  • 6806

【转载】复数的物理意义是什么?

【转载】复数的物理意义是什么?知乎专栏 作者:Heinrich,生娃学工打折腿 来源: http://www.zhihu.com/question/23234701/answer/26017000复...
  • linczone
  • linczone
  • 2015-05-23 15:21:39
  • 580

特征方程的物理意义

我们先来看点直观性的内容。矩阵的特征方程式是: 矩阵实际可以看作一个变换,方程左边就是把向量x变到另一个位置而已;右边是把向量x作了一个拉伸,拉伸量是lambda。那么它的意义就很明显了...
  • NightkidLi_911
  • NightkidLi_911
  • 2014-07-28 19:30:23
  • 1964

复数的物理意义

复数不仅有意义,而且可以用图示来优雅地解释。 1、实函数与数轴变换 大家都认识,对于这样的初等函数,我们从小就学会使用直角坐标系来刻画它们: 它们的特点都大同小异:把实数轴对应到实数轴。然而...
  • sdulibh
  • sdulibh
  • 2016-02-13 10:31:09
  • 1134

深入浅出解释FFT(五)——FFT结果的物理意义

FFT是离散傅立叶变换的快速算法,可以将一个信号变换到频域。有些信号在时域上是很难看出什么特征的,但是如果变换到频域之后,就很容易看出特征了。这就是很多信号分析采用FFT变换的原因。另外,FFT可以将...
  • wordwarwordwar
  • wordwarwordwar
  • 2017-04-02 12:37:04
  • 5231

[信号]复数的物理意义?

知乎的一个回答值得学习Heinrich的回答 - 知乎https://www.zhihu.com/question/23234701/answer/26017000...
  • Russius
  • Russius
  • 2018-02-08 16:42:09
  • 66

图像二维傅里叶变换的物理意义

  • 2013年03月01日 09:41
  • 474KB
  • 下载

卷积物理意义 卷积最简单解释

一个人打了你一巴掌  力度为1 你的脸肿胀程度随时间变化的趋势为 第一小时 半径为1 的包,第二小时半径为2的包,第三小时半径为3的包,第四小时半径为2的包,第五小时半径为1 的包,第六小时...
  • u010918541
  • u010918541
  • 2016-12-14 18:20:47
  • 1408
    个人资料
    专栏达人 持之以恒
    等级:
    访问量: 89万+
    积分: 2万+
    排名: 336
    博客专栏
    最新评论