CUDA动态库封装以及调用

CUDA动态库封装以及调用

参考:http://blog.sina.com.cn/s/blog_618941f701016d26.html

通过将CUDA相关计算操作放在库中,方便在项目中调用,省去了每次编译cu文件的麻烦,也便于集成到其他平台上。

本文配置:VS2015   CUDA8.0

一、封装CUDA动态库

主要步骤:修改自定义方式、设置cu文件项类型为CDUA CC++ ,添加依赖库cudart.lib.

1、创建一个动态库,这里建的库是x86的,也可以更改为x64.

2、添加cu文件

3、源程序内容

CudaDll32.h

[cpp]  view plain  copy
  1. // 下列 ifdef 块是创建使从 DLL 导出更简单的  
  2. // 宏的标准方法。此 DLL 中的所有文件都是用命令行上定义的 CUDADLL32_EXPORTS  
  3. // 符号编译的。在使用此 DLL 的  
  4. // 任何其他项目上不应定义此符号。这样,源文件中包含此文件的任何其他项目都会将  
  5. // CUDADLL32_API 函数视为是从 DLL 导入的,而此 DLL 则将用此宏定义的  
  6. // 符号视为是被导出的。  
  7. #ifdef CUDADLL32_EXPORTS  
  8. #define CUDADLL32_API __declspec(dllexport)  
  9. #else  
  10. #define CUDADLL32_API __declspec(dllimport)  
  11. #endif  
  12.   
  13. extern "C" CUDADLL32_API int vectorAdd(int c[], int a[], int b[], int size);  
kernel.cu
[cpp]  view plain  copy
  1. #include "cuda_runtime.h"    
  2. #include "device_launch_parameters.h"      
  3. #include "CudaDll32.h"  
  4.   
  5.   
  6. //CUDA核函数    
  7. __global__ void addKernel(int *c, const int *a, const int *b)  
  8. {  
  9.     int i = threadIdx.x;  
  10.     c[i] = a[i] + b[i];  
  11. }  
  12.   
  13.   
  14. //向量相加    
  15. CUDADLL32_API int vectorAdd(int c[], int a[], int b[], int size)  
  16. {  
  17.     int result = -1;  
  18.     int *dev_a = 0;  
  19.     int *dev_b = 0;  
  20.     int *dev_c = 0;  
  21.     cudaError_t cudaStatus;  
  22.   
  23.     // 选择用于运行的GPU    
  24.     cudaStatus = cudaSetDevice(0);  
  25.     if (cudaStatus != cudaSuccess) {  
  26.         result = 1;  
  27.         goto Error;  
  28.     }  
  29.   
  30.     // 在GPU中为变量dev_a、dev_b、dev_c分配内存空间.    
  31.     cudaStatus = cudaMalloc((void**)&dev_c, size * sizeof(int));  
  32.     if (cudaStatus != cudaSuccess) {  
  33.         result = 2;  
  34.         goto Error;  
  35.     }  
  36.     cudaStatus = cudaMalloc((void**)&dev_a, size * sizeof(int));  
  37.     if (cudaStatus != cudaSuccess) {  
  38.         result = 3;  
  39.         goto Error;  
  40.     }  
  41.     cudaStatus = cudaMalloc((void**)&dev_b, size * sizeof(int));  
  42.     if (cudaStatus != cudaSuccess) {  
  43.         result = 4;  
  44.         goto Error;  
  45.     }  
  46.   
  47.     // 从主机内存复制数据到GPU内存中.    
  48.     cudaStatus = cudaMemcpy(dev_a, a, size * sizeof(int), cudaMemcpyHostToDevice);  
  49.     if (cudaStatus != cudaSuccess) {  
  50.         result = 5;  
  51.         goto Error;  
  52.     }  
  53.     cudaStatus = cudaMemcpy(dev_b, b, size * sizeof(int), cudaMemcpyHostToDevice);  
  54.     if (cudaStatus != cudaSuccess) {  
  55.         result = 6;  
  56.         goto Error;  
  57.     }  
  58.   
  59.     // 启动GPU内核函数    
  60.     addKernel << <1, size >> >(dev_c, dev_a, dev_b);  
  61.   
  62.     // 采用cudaDeviceSynchronize等待GPU内核函数执行完成并且返回遇到的任何错误信息    
  63.     cudaStatus = cudaDeviceSynchronize();  
  64.     if (cudaStatus != cudaSuccess) {  
  65.         result = 7  
  66.         goto Error  
  67.     }  
  68.   
  69.     // 从GPU内存中复制数据到主机内存中    
  70.     cudaStatus = cudaMemcpy(c, dev_c, size * sizeof(int), cudaMemcpyDeviceToHost);  
  71.     if (cudaStatus != cudaSuccess) {  
  72.         result = 8;  
  73.         goto Error;  
  74.     }  
  75.   
  76.     result = 0;  
  77.   
  78.     // 重置CUDA设备,在退出之前必须调用cudaDeviceReset    
  79.     cudaStatus = cudaDeviceReset();  
  80.     if (cudaStatus != cudaSuccess) {  
  81.         return 9;  
  82.     }  
  83. Error:  
  84.     //释放设备中变量所占内存    
  85.     cudaFree(dev_c);  
  86.     cudaFree(dev_a);  
  87.     cudaFree(dev_b);  
  88.   
  89.     return result;  
  90. }  
4、修改项目的自定义方式为:CUDA8.0


5、修改cu文件的项类型

6、添加链接器的附加依赖项 cudart.lib

7、生成DLL文件

二、调用动态库

创建一个控制台工程,调用库三步骤:

调用源代码:包含头文件、并把dll文件拷贝到可行性目录下

[cpp]  view plain  copy
  1. // CallCudaDll32.cpp : 定义控制台应用程序的入口点。  
  2. //  
  3.   
  4. #include "stdafx.h"  
  5. #include "CudaDll32.h"  
  6. int main()  
  7. {  
  8.     const int arraySize = 5;  
  9.     int a[arraySize] = { 11, 22, 33, 44, 55 };  
  10.     int b[arraySize] = { 10, 20, 30, 40, 50 };  
  11.     int c[arraySize] = { 0 };  
  12.   
  13.     // Add vectors in parallel.    
  14.     int number = vectorAdd(c, a, b, arraySize);  
  15.     printf("{11,22,33,44,55} + {10,20,30,40,50} = {%d,%d,%d,%d,%d}\n",  
  16.         c[0], c[1], c[2], c[3], c[4]);  
  17.     printf("调用CUDA成功!\n");  
  18.     return 0;  
  19. }  
结果显示:
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI算法网奇

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值