目录
选择多边形区域ROI:
import cv2
import numpy as np
import joblib
pts = [] # 用于存放点
# 统一的:mouse callback function
def draw_roi(event, x, y, flags, param):
img2 = img.copy()
if event == cv2.EVENT_LBUTTONDOWN: # 左键点击,选择点
pts.append((x, y))
if event == cv2.EVENT_RBUTTONDOWN: # 右键点击,取消最近一次选择的点
pts.pop()
if event == cv2.EVENT_MBUTTONDOWN: # 中键绘制轮廓
mask = np.zeros(img.shape, np.uint8)
points = np.array(pts, np.int32)
points = points.reshape((-1, 1, 2))
# 画多边形
mask = cv2.polylines(mask, [points], True, (255, 255, 255), 2)
mask2 = cv2.fillPoly(mask.copy(), [points], (255, 255, 255)) # 用于求 ROI
mask3 = cv2.fillPoly(mask.copy(), [points], (0, 255, 0)) # 用于 显示在桌面的图像
show_image = cv2.addWeighted(src1=img, alpha=0.8, src2=mask3, beta=0.2, gamma=0)
cv2.imshow("mask", mask2)
cv2.imshow("show_img", show_image)
ROI = cv2.bitwise_and(mask2, img)
cv2.imshow("ROI", ROI)
cv2.waitKey(0)
if len(pts) > 0:
# 将pts中的最后一点画出来
cv2.circle(img2, pts[-1], 3, (0, 0, 255), -1)
if len(pts) > 1:
# 画线
for i in range(len(pts) - 1):
cv2.circle(img2, pts[i], 5, (0, 0, 255), -1) # x ,y 为鼠标点击地方的坐标
cv2.line(img=img2, pt1=pts[i], pt2=pts[i + 1], color=(255, 0, 0), thickness=2)
cv2.imshow('image', img2)
# 创建图像与窗口并将窗口与回调函数绑定
img = cv2.imread("./123.jpg")
cv2.namedWindow('image')
cv2.setMouseCallback('image', draw_roi)
print("[INFO] 单击左键:选择点,单击右键:删除上一次选择的点,单击中键:确定ROI区域")
print("[INFO] 按‘S’确定选择区域并保存")
print("[INFO] 按 ESC 退出")
while True:
key = cv2.waitKey(1) & 0xFF
if key == 27:
break
if key == ord("s"):
saved_data = {"ROI": pts}
joblib.dump(value=saved_data, filename="config.pkl")
print("[INFO] ROI坐标已保存到本地.")
break
cv2.destroyAllWindows()
多边形裁剪:
方法1:
先上效果图:
代码:
import cv2
import numpy as np
img = cv2.imread(r'd:/qinlan.jpg')
shape = img.shape
points_704 = np.array([[30, 280], [240, 290], [280, 30], [30, 30]])
height = shape[1]
# 图片的高度尺寸
img_origin = img.copy()
cv2.fillConvexPoly(img, points_704, 1)
bitwisexor = cv2.bitwise_xor(img, img_origin)
cv2.imshow("asdf", bitwisexor)
cv2.waitKey(0)
注意:points_704的坐标格式是[[x1,y1],[x2,y2],[x3,y3],[x4,y4]]
points_704的坐标点需要是顺时针或者逆时针顺序,如果顺序随机的,可能出现下图情况:
import cv2
import numpy as np
img = cv2.imread(r'd:/qinlan.jpg')
shape = img.shape
points_704 = np.array([[30, 280], [240, 290],[30, 30], [280, 30]])
height = shape[1]
# 图片的高度尺寸
img_origin = img.copy()
cv2.fillConvexPoly(img, points_704, 1)
bitwisexor = cv2.bitwise_xor(img, img_origin)
cv2.imshow("asdf", bitwisexor)
cv2.waitKey(0)
别着急,还有办法:
加个顺时针排序:
import cv2
import numpy as np
from functools import reduce
import operator
import math
img = cv2.imread(r'd:/qinlan.jpg')
shape = img.shape
points_704 = np.array([[30, 280], [240, 290],[30, 30], [280, 30]])
coords =points_704
#开始顺时针排序
center = tuple(map(operator.truediv, reduce(lambda x, y: map(operator.add, x, y), coords), [len(coords)] * 2))
points_new=sorted(coords, key=lambda coord: (-135 - math.degrees(math.atan2(*tuple(map(operator.sub, coord, center))[::-1]))) % 360, reverse=True)
points_new=np.array(points_new)
height = shape[1]
# 图片的高度尺寸
img_result = img.copy()
cv2.fillConvexPoly(img, points_new, 1)
bitwisexor = cv2.bitwise_xor(img, img_result)
cv2.imshow("bitwisexor", bitwisexor)
cv2.imshow("img", img)
cv2.waitKey(0)