python多边形裁剪

目录

选择多边形区域ROI:

多边形裁剪:

加个顺时针排序:


选择多边形区域ROI:

import cv2
import numpy as np
import joblib

pts = []  # 用于存放点


# 统一的:mouse callback function
def draw_roi(event, x, y, flags, param):
    img2 = img.copy()

    if event == cv2.EVENT_LBUTTONDOWN:  # 左键点击,选择点
        pts.append((x, y))

    if event == cv2.EVENT_RBUTTONDOWN:  # 右键点击,取消最近一次选择的点
        pts.pop()

    if event == cv2.EVENT_MBUTTONDOWN:  # 中键绘制轮廓
        mask = np.zeros(img.shape, np.uint8)
        points = np.array(pts, np.int32)
        points = points.reshape((-1, 1, 2))
        # 画多边形
        mask = cv2.polylines(mask, [points], True, (255, 255, 255), 2)
        mask2 = cv2.fillPoly(mask.copy(), [points], (255, 255, 255))  # 用于求 ROI
        mask3 = cv2.fillPoly(mask.copy(), [points], (0, 255, 0))  # 用于 显示在桌面的图像

        show_image = cv2.addWeighted(src1=img, alpha=0.8, src2=mask3, beta=0.2, gamma=0)

        cv2.imshow("mask", mask2)
        cv2.imshow("show_img", show_image)

        ROI = cv2.bitwise_and(mask2, img)
        cv2.imshow("ROI", ROI)
        cv2.waitKey(0)

    if len(pts) > 0:
        # 将pts中的最后一点画出来
        cv2.circle(img2, pts[-1], 3, (0, 0, 255), -1)

    if len(pts) > 1:
        # 画线
        for i in range(len(pts) - 1):
            cv2.circle(img2, pts[i], 5, (0, 0, 255), -1)  # x ,y 为鼠标点击地方的坐标
            cv2.line(img=img2, pt1=pts[i], pt2=pts[i + 1], color=(255, 0, 0), thickness=2)

    cv2.imshow('image', img2)


# 创建图像与窗口并将窗口与回调函数绑定
img = cv2.imread("./123.jpg")
cv2.namedWindow('image')
cv2.setMouseCallback('image', draw_roi)
print("[INFO] 单击左键:选择点,单击右键:删除上一次选择的点,单击中键:确定ROI区域")
print("[INFO] 按‘S’确定选择区域并保存")
print("[INFO] 按 ESC 退出")

while True:
    key = cv2.waitKey(1) & 0xFF
    if key == 27:
        break
    if key == ord("s"):
        saved_data = {"ROI": pts}
        joblib.dump(value=saved_data, filename="config.pkl")
        print("[INFO] ROI坐标已保存到本地.")
        break
cv2.destroyAllWindows()

多边形裁剪:

方法1:

先上效果图:

 代码:

import cv2
import numpy as np
img = cv2.imread(r'd:/qinlan.jpg')

shape = img.shape
points_704 = np.array([[30, 280], [240, 290], [280, 30], [30, 30]])

height = shape[1]
# 图片的高度尺寸
img_origin = img.copy()
cv2.fillConvexPoly(img, points_704, 1)
bitwisexor = cv2.bitwise_xor(img, img_origin)

cv2.imshow("asdf", bitwisexor)
cv2.waitKey(0)

注意:points_704的坐标格式是[[x1,y1],[x2,y2],[x3,y3],[x4,y4]]

points_704的坐标点需要是顺时针或者逆时针顺序,如果顺序随机的,可能出现下图情况:

import cv2
import numpy as np
img = cv2.imread(r'd:/qinlan.jpg')

shape = img.shape
points_704 = np.array([[30, 280], [240, 290],[30, 30], [280, 30]])

height = shape[1]
# 图片的高度尺寸
img_origin = img.copy()
cv2.fillConvexPoly(img, points_704, 1)
bitwisexor = cv2.bitwise_xor(img, img_origin)

cv2.imshow("asdf", bitwisexor)
cv2.waitKey(0)

别着急,还有办法:

加个顺时针排序:

import cv2
import numpy as np

from functools import reduce
import operator
import math

img = cv2.imread(r'd:/qinlan.jpg')

shape = img.shape
points_704 = np.array([[30, 280], [240, 290],[30, 30], [280, 30]])


coords =points_704
#开始顺时针排序
center = tuple(map(operator.truediv, reduce(lambda x, y: map(operator.add, x, y), coords), [len(coords)] * 2))
points_new=sorted(coords, key=lambda coord: (-135 - math.degrees(math.atan2(*tuple(map(operator.sub, coord, center))[::-1]))) % 360, reverse=True)

points_new=np.array(points_new)

height = shape[1]
# 图片的高度尺寸
img_result = img.copy()
cv2.fillConvexPoly(img, points_new, 1)
bitwisexor = cv2.bitwise_xor(img, img_result)


cv2.imshow("bitwisexor", bitwisexor)
cv2.imshow("img", img)
cv2.waitKey(0)

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI算法网奇

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值