pytorch 测试 darknet

本文介绍如何在PyTorch平台上使用代码测试Darknet21和Darknet53模型,展示特征维度以及CPU和GPU上的执行时间。尽管Darknet21在嵌入式设备上无法实现实时检测,但提供了模型性能的评估。
摘要由CSDN通过智能技术生成

直接上代码,pytorch平台,测试darknet21,darknet53

本文代码能输出特征维度,cpu、gpu上执行时间

darknet21在嵌入式芯片上还达不到实时检测。

代码改自:

https://github.com/manaai-cn/YoloV4_pytorch/blob/34b95da692df24d09a612d9927b6e3e626ae69e7/models/backbones/darknet.py

import time
import torch
import torch.nn as nn
import math
from collections import OrderedDict

# from nets.coordConv import CoordConv

class BasicBlock(nn.Module):
    def __init__(self, inplanes, planes,dim):
        super(BasicBlock, self).__init__()

        self.conv1 = nn.Conv2d(inplanes, planes[0], kernel_size=1,stride=1, pa
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI算法网奇

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值