pytorch 筛选数据(使用与或)

本文介绍了如何在PyTorch中使用与或操作符进行数据筛选,通过示例展示了筛选数据并进行条件赋值的方法。示例中包含了对二维张量的筛选,并解释了二级筛选赋值的注意事项。
摘要由CSDN通过智能技术生成

目录

pytorch 筛选数据(使用与或)

pytorch筛选赋值


pytorch 筛选数据(使用与或)

import torch

x = torch.linspace(1, 8, steps=8).view(4, 2)
print(x)

area1=(x[:,0]>5.5)&(x[:,1]>5.5)

c=x[:,0]*x[:,1]
area2=c>25

area=area1|area2
print(x[area])

if 0:
# index=torch.max(area,1)[0]
b=x[area]
# b= x[torch.where((x[:,0]>0) & (x[:,0]<6))]
# print(b)

pytorch筛选赋值

def cross_entropy_loss_RCF(prediction, labelf, beta):
    label &#
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI算法网奇

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值