训练loss不下降原因集合

本文探讨了在深度学习中train loss和test loss的分析,包括loss不变的常见原因,如数据输入错误、网络结构不当、初始化权重问题等,并提供了相应的解决方案。通过对损失函数、梯度检验和训练过程的监控,可以有效地解决loss不下降的问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

11年it研发经验,从一个会计转行为算法工程师,学过C#,c++,java,android,php,go,js,python,CNN神经网络,四千多篇博文,三千多篇原创,只为与你分享,共同成长,一起进步,关注我,给你分享更多干货知识!

目录

一,train loss与test loss结果分析

比较完整 Loss和神经网络训练

1.loss等于87.33不变

2.loss保持0.69左右

参考资料

loss一直不下降的原因有很多,可以从头到尾滤一遍:

loss一开始就不下降


现在都有ap来衡量网络收敛程度,实践发现,loss降低,但是ap不一定增长。

一,train loss与test loss结果分析

train loss 不断下降,test loss不断下降,说明网络仍在学习;

train loss 不断下降,test loss趋于不变,说明网络过拟合;

train loss 趋于不变,test loss不断下降,说明数据集100%有问题;

train loss 趋于不变,test loss趋于不变,说明学习遇到瓶颈,需要减小学习率或批量数目;

train loss 不断上升,test loss不断上升,说明网络结构设计不当,训练超参数设置不当,数据集经过清洗等问题。

二,

### 模型训练中的Loss计算方法 在模型训练期间,损失函数(loss function)用于衡量预测值与真实标签之间的差异。对于同的任务类型,会选择同类型的损失函数来适应特定的需求。 - 对于分类问题,常用的损失函数有交叉熵损失(Cross Entropy Loss),其定义为: \[ L(y, \hat{y}) = -\sum_{i} y_i \log(\hat{y}_i) \] 这里 \(y\) 表示真实的概率分布向量,而 \(\hat{y}\) 则表示由模型产生的预测概率分布向量[^1]。 - 对于回归问题,则通常会使用均方误差作为损失度量标准: \[ MSE = \frac{1}{n}\sum^n_{i=1}(y_i-\hat{y}_i)^2 \] 其中 \(y_i\) 是实际观测到的目标变量值,\(\hat{y}_i\) 是对应的预测值,\(n\) 代表样本数量。 ### 如何优化Loss并提高模型表现 为了有效地减少损失值,在实践中可以采取多种策略来进行调优工作: #### 调整学习率 适当的学习速率可以帮助梯度下降算法更快更稳定地收敛至全局最小点或者局部极小区域附近。过高的学习速度可能导致震荡无法达到最优点;相反,太低则会使迭代次数过多浪费时间资。因此找到合适范围内的初始学习率至关重要,并可根据情况动态调整这个参数。 #### 使用正则化技术防止过拟合 当网络结构复杂度过高时容易发生过拟合现象,即虽然能在训练集上取得很好的成绩但在测试集上的泛化能力较差。通过引入L1/L2范数惩罚项能够抑制权重过大从而缓解此状况的发生几率。具体形式如下所示: \[ L_2 = \lambda ||W||^2_2 \] \[ L_1 = \lambda ||W||_1 \] 这里的 \( W \) 表示待估计参数矩阵,\(\lambda\) 控制着正则化的强度大小。 #### 数据增强(Data Augmentation) 通过对原始输入图像施加随机变换操作比如旋转、缩放和平移等方式扩充现有数据集规模的同时也增加了多样性,有助于提升最终得到的结果质量。 ```python import torch.nn as nn criterion = nn.CrossEntropyLoss() # 定义交叉熵损失函数 optimizer = optim.Adam(model.parameters(), lr=0.001) # 设置Adam优化器及其默认学习率为0.001 ``` #### 验证集监控 利用验证集合评估当前状态下所构建出来的神经元连接模式的好坏程度以便及时发现潜在的问题所在之处进而做出相应改进措施。如果连续多个epoch内val_loss再继续减小甚至有所回升的话就说明可能出现了欠拟合或者是其他异常情况需要引起重视。
评论 46
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI算法网奇

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值