Lucene是一个高性能的JAVA全文检索工具包,它使用的是倒排文件索引结构。该结构及相应的生成算法如下:
设有两篇文章1和2:
文章1的内容为:Tom lives in Guangzhou, I live in Guangzhou too.
文章2的内容为:He once lived in Shanghai.
文章1的内容为:Tom lives in Guangzhou, I live in Guangzhou too.
文章2的内容为:He once lived in Shanghai.
由于 lucene 是基于关键词索引和查询的,首先我们要取得这两篇文章的关键词,处理措施如下:
a. 分词处理。英文单词由于用空格分隔,比较好处理。中文单词间是连在一起的需要特殊的分词处理。
b. 文章中的 “in” , “once” , “too” 等词没有什么实际意义,中文中的 “ 的 ” , “ 是 ” 等字通常也无具体含义,这些不代表概念的词可以过滤掉。
c. 所有单词不区分大小写。
d. 用户通常希望查 “live” 时能把含 “lives” , “lived” 的文章也找出来,故把 “lives” , “lived” 还原成 “live” 。
e. 文章中的标点符号通常不表示某种概念,也可以过滤掉。
在 lucene 中以上措施由 Analyzer 类完成。
经过上面处理后
文章 1 的所有关键词为: [tom] [live] [guangzhou] [i] [live] [guangzhou]
文章 2 的所有关键词为: [he] [live] [shanghai]
有了关键词后,我们就可以建立倒排索引了。上面的对应关系是:
“
文章号
”
对应
“
文章中所有关键词
”
。倒排索引把这个关系倒过来,变成:
“
关键词
”
对应
“
拥有该关键词的所有文章号
”
。
文章 1 , 2 经过倒排后变成:
关键词 文章号
Guangzhou 1
he 2
I 1
live 1,2
shanghai 2
tom 1
通常仅知道关键词在哪些文章中出现还不够,我们还需要知道关键词在文章中出现次数和出现的位置,通常有两种位置: a) 字符位置,即记录该词是文章中第几个字符(优点是关键词亮显时定位快); b) 关键词位置,即记录该词是文章中第几个关键词(优点是节约索引空间、词组( phase )查询快), lucene 中记录的就是这种位置
加上“出现频率”和“出现位置”信息后,我们的索引结构变为:
关键词 文章号[出现频率] 出现位置
Guangzhou 1[2] 3,6
he 2[1] 1
I 1[1] 4
live 1[2],2[1] 2,5,2
shanghai 2[1] 3
tom 1[1] 1
以
live
这行为例我们说明一下该结构:
live
在文章
1
中出现了
2
次,文章
2
中出现了一次,它的出现位置为
“2,5,2”
,这表示什么呢?我们需要结合文章号和出现频率来分析。
实现时 lucene 将上面三列分别作为词典文件( Term Dictionary )、频率文件 (Frequencies) 、位置文件 (Positions) 保存。其中词典文件不仅保存有每个关键词,还保留了指向频率文件和位置文件的指针,通过指针可以找到该关键字的频率信息和位置信息。
Lucene 中使用了 field 的概念,用于表达信息所在位置(如标题中,文章中, URL 中),在建索引时,该 field 信息也记录在词典文件中,每个关键词都有一个 field 信息 ( 因为每个关键字一定属于一个或多个 field) 。
为了减小索引文件的大小, Lucene 对索引还使用了压缩技术。首先,对词典文件中的关键词进行了压缩,关键词压缩为 < 前缀长度,后缀 > ,例如:当前词为 “ 阿拉伯语 ” ,前缀为 “ 阿拉伯 ” ,那么 “ 阿拉伯语 ” 压缩为 <3 ,语 > 。其次大量用到的是对数字的压缩,数字只保存与上一个值的差值(这样可以减小数字的长度,进而减少保存该数字需要的字节数)。例如当前文章号是 16389 (不压缩要用 3 个字节保存),上一文章号是 16382 ,压缩后保存 7 (只用一个字节)
下面我们可以通过对该索引的查询来解释一下为什么要建立索引。
假设要查询单词 “live”,lucene先对词典二元查找、找到该词,通过指向频率文件的指针读出所有文章号,然后返回结果。词典通常非常小,因而,整个过程的时间是毫秒级的。
而用普通的顺序匹配算法,不建索引,而是对所有文章的内容进行字符串匹配,这个过程将会相当缓慢,当文章数目很大时,时间往往是无法忍受的。