机器学习中用什么评价分类结果?

我们在机器学习中如何评价一个算法的好坏呢?对于一个回归问题,可以使用MSE、RMSE、MAE、R方。对于一个分类问题,可以使用分类精准度。但是实际上,分类精准度是存在陷阱的,有时候我们会需要更加全面的信息。

1.1 分类准确度够用么?

分类准确度在评价分类算法时,会有很大的问题的。分类算法的评价要比回归算法多很多。
对于一个癌症预测系统,输入检查指标,判断是否患有癌症,预测准确度99.9%。这个系统是好是坏呢?
如果癌症产生的概率是0.1%,那其实根本不需要任何机器学习算法,只要系统预测所有人都是健康的,即可达到99.9%的准确率。也就是说对于极度偏斜(Skewed Data)的数据,只使用分类准确度是不能衡量。
这时就需要使用混淆矩阵(Confusion Matrix)做进一步分析。

1.2 混淆矩阵

对于二分类问题来说,所有的问题被分为0和1两类,混淆矩阵是2*2的矩阵:
在这里插入图片描述

  • TN:真实值是0,预测值也是0,即我们预测是negative,预测正确了。
  • FP:真实值是0,预测值是1,即我们预测是positive,但是预测错误了。
  • FN:真实值是1,预测值是0,即我们预测是negative,但预测错误了。
  • TP:真实值是1,预测值是1,即我们预测是positive,预测正确了。

现在假设有1万人进行预测,填入混淆矩阵如下:
对于1万个人中,有9978个人本身并没有癌症,我们的算法也判断他没有癌症;有12个人本身没有癌症,但是我们的算法却错误地预测他有癌症;有2个人确实有癌症,但我们算法预测他没有癌症;有8个人确实有癌症,而且我们也预测对了。

因为混淆矩阵表达的信息比简单的分类准确度更全面,因此可以通过混淆矩阵得到一些有效的指标。

2.1精准率和召回率
根据混淆矩阵可以求得指标:
在这里插入图片描述精准率:在这里插入图片描述
即精准率为8/(8+12)=40%。所谓的精准率是:分母为所有预测为1的个数,分子是其中预测对了的个数,即预测值为1,且预测对了的比例。

为什么管它叫精准率呢?在有偏的数据中,我们通常更关注值为1的特征,比如“患病”,比如“有风险”。在100次结果为患病的预测,平均有40次预测是对的。即精准率为我们关注的那个事件,预测的有多准。

召回率:
在这里插入图片描述
即召回率为8/(8+2)=80%。所谓召回率是:所有真实值为1的数据中,预测对了的个数。每当有100个癌症患者,算法可以成功的预测出8个 。也就是我们关注的那个事件真实的发生情况下,我们成功预测的比例是多少。

那么为什么需要精准率和召回率呢?还是下面的这个例子,有10000个人,混淆矩阵如下:
在这里插入图片描述如果我们粗暴的认为所有人都是健康的,那算法的准确率是99.78%,但这是毫无意义的。如果算精准率则是40%,召回率是80%。

获取模型分类结果的混淆矩阵的相关API:

import sklearn.metrics as sm
sm.confusion_matrix(实际输出, 预测输出)->混淆矩阵

2.2更关注哪个?

精准率(查准率):预测值为1,且预测对了的比例,即:我们关注的那个事件,预测的有多准。

召回率(查全率):所有真实值为1的数据中,预测对了的个数,即:我们关注的那个事件真实的发生情况下,我们成功预测的比例是多少。

有的时候,对于一个算法而言,精准率高一些,召回率低一些;或者召回率高一些,精准率低一些。那么如何取舍呢?

其实在衡量机器学习的其他指标中,我们也需要进行取舍,通常只需要把握一个原则:

视场景而定。

比如我们做了一个股票预测系统,未来股票是📈还是📉这样一个二分类问题。很显然“涨”才是我们关注的焦点,那么我们肯定希望:系统预测上涨的股票中,真正上涨的比例越大越好,这就是希望查准率高。那么我们是否关注查全率呢?在大盘中有太多的真实上涨股票,虽然我们漏掉了一些上升周期,但是我们没有买进,也就没有损失。但是如果查准率不高,预测上涨的结果下跌了,那就是实实在在的亏钱了。所以在这个场景中,查准率更重要。

当然也有追求召回率的场景,在医疗领域做疾病诊断,如果召回率低,意味着本来有一个病人得病了,但是没有正确预测出来,病情就恶化了。我们希望尽可能地将所有有病的患者都预测出来,而不是在看在预测有病的样例中有多准。

但是,在实际业务场景中,也有很多没有这么明显的选择。那么在同时需要关注精准率和召回率,如何在两个指标中取得平衡呢?在这种情况下,我们使用一种新的指标:F1 Score。

2.3二者兼顾 F1 Score

如果要我们综合精准率和召回率这两个指标,我们可能会想到取平均值这样的方法。F1 Score的思想也差不多:
F1 Score 是精准率和召回率的调和平均值。
在这里插入图片描述
什么是调和平均值?为什么要取调和平均值?调和平均值的特点是如果二者极度不平衡,如某一个值特别高、另一个值特别低时,得到的F1 Score值也特别低;只有二者都非常高,F1才会高。这样才符合我们对精准率和召回率的衡量标准。
在这里插入图片描述
3.1ROC曲线
在了解ROC曲线之前,先看三个概念:分类阈值、TPR和FPR
3.1.1 分类阈值

分类阈值,即设置判断样本为正例的阈值thr,

如果某个逻辑回归模型对某封电子邮件进行预测时返回的概率为 0.9995,则表示该模型预测这封邮件非常可能是垃圾邮件。相反,在同一个逻辑回归模型中预测分数为 0.0003 的另一封电子邮件很可能不是垃圾邮件。可如果某封电子邮件的预测分数为 0.6 呢?为了将逻辑回归值映射到二元类别,您必须指定分类阈值(也称为判定阈值)。如果值高于该阈值,则表示“垃圾邮件”;如果值低于该阈值,则表示“非垃圾邮件”。人们往往会认为分类阈值应始终为 0.5,但阈值取决于具体问题,因此您必须对其进行调整。

在sklearn中有一个方法叫:decision_function,即返回分类阈值

decision_scores = log_reg.decision_function(X_test)
y_predict = np.array(decision_scores >= 5, dtype='int')

我们知道,精准率和召回率这两个指标有内在的联系,并且相互冲突。precision随着threshold的增加而降低,recall随着threshold的增大而减小。如果某些场景需要precision,recall都保持在80%,可以通过这种方式求出threshold

3.1.2TPR
TPR:预测为1,且预测对了的数量,占真实值为1的数据百分比。很好理解,就是召回率。
在这里插入图片描述

3.1.3 FPR
FPR:预测为1,但预测错了的数量,占真实值不为1的数据百分比。与TPR相对应,FPR除以真实值为0的这一行所有的数字和 。
在这里插入图片描述TPR和FPR之间是成正比的,TPR高,FPR也高。ROC曲线就是刻画这两个指标之间的关系。

3.2 什么是ROC曲线
ROC曲线(Receiver Operation Characteristic Cureve),描述TPR和FPR之间的关系。x轴是FPR,y轴是TPR。

我们已经知道,TPR就是所有正例中,有多少被正确地判定为正;FPR是所有负例中,有多少被错误地判定为正。 分类阈值取不同值,TPR和FPR的计算结果也不同,最理想情况下,我们希望所有正例 & 负例 都被成功预测 TPR=1,FPR=0,即 所有的正例预测值 > 所有的负例预测值,此时阈值取最小正例预测值与最大负例预测值之间的值即可。

TPR越大越好,FPR越小越好,但这两个指标通常是矛盾的。为了增大TPR,可以预测更多的样本为正例,与此同时也增加了更多负例被误判为正例的情况。
sklearn中的ROC曲线:

from sklearn.metrics import roc_curve

fprs, tprs, thresholds = roc_curve(y_test, decision_scores)
plt.plot(fprs, tprs)
plt.show()

3.3分析
ROC曲线距离左上角越近,证明分类器效果越好。如果一条算法1的ROC曲线完全包含算法2,则可以断定性能算法1>算法2。这很好理解,此时任做一条 横线(纵线),任意相同TPR(FPR) 时,算法1的FPR更低(TPR更高),故显然更优。
在这里插入图片描述我们可以看出,左上角的点(TPR=1,FPR=0),为完美分类,也就是这个医生医术高明,诊断全对。TPR>FPR,说明医生的判断大体是正确的。中线上的点TPR=FPR,也就是医生全都是蒙的,蒙对一半,蒙错一半;下半平面的点TPR<FPR,这个医生说你有病,那么你很可能没有病,医生的话我们要反着听,为真庸医。

很多时候两个分类器的ROC曲线交叉,无法判断哪个分类器性能更好,这时可以计算曲线下的面积AUC,作为性能度量。

4.AUC
一般在ROC曲线中,我们关注是曲线下面的面积, 称为AUC(Area Under Curve)。这个AUC是横轴范围(0,1 ),纵轴是(0,1)所以总面积是小于1的。

ROC和AUC的主要应用:比较两个模型哪个好?主要通过AUC能够直观看出来。

ROC曲线下方由梯形组成,矩形可以看成特征的梯形。因此,AUC的面积可以这样算:(上底+下底)* 高 / 2,曲线下面的面积可以由多个梯形面积叠加得到。AUC越大,分类器分类效果越好。

  • AUC = 1,是完美分类器,采用这个预测模型时,不管设定什么阈值都能得出完美预测。绝大多数预测的场合,不存在完美分类器。
  • 0.5 < AUC < 1,优于随机猜测。这个分类器(模型)妥善设定阈值的话,能有预测价值。
  • AUC = 0.5,跟随机猜测一样,模型没有预测价值。
  • AUC < 0.5,比随机猜测还差;但只要总是反预测而行,就优于随机猜测。
    可以在sklearn中求出AUC值
from sklearn.metrics import roc_auc_score
roc_auc_score(y_test, decision_scores)
# 输出:
# 0.9830452674897119
  • 5
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值