图像多label分割的dice损失函数

本文探讨了医学影像中多个目标的分割方法,详细解释了如何使用One-hot编码将单通道标注转换为多通道形式,以便于网络模型训练。同时,介绍了多label分割的Dice损失函数计算及预测结果的可视化过程。

目标:

实现图像中多个物体的分割,多个物体的标注方式为0,1,2,3,,,,,0表示背景,1表示一种物体,2表示另一种物体,假设我们现在的分割任务里面有5个目标需要,如肺叶分割,5个肺叶的标注方式为:0表示背景,1表示右上叶,2表示右中叶,3表示右下叶,4表示左上页,5表示左下叶。

前提:

首先我们拿到的标注应该是单通道的,如大小为96*96*64*1,但在网络模型设计中输出通道数应该是分割类别数,即网络模型最后的输出大小为96*96*64*6(这里最后一维6指背景+5个目标),这样在训练的时候网络输出和标注之间大小不匹配,不能进行损失值计算,所以需要将原来单通道的标注图像变成6个通道,这就需要用到One-hot编码,在每个通道上(即将每一类进行二值化)。

正文:

One-hot编码:

以上是肺叶的标注图像,可以看到背景像素值是0,其余叶标注值分别为1,2,3,4,5,以矩阵表示大概为(二维图像举例,并不是这个图的真正矩阵):

[00000000
 01211110
 01222330
 01123340
 01223440
 01233550
 02234450
 02334550]

经过One-hot编码后变成6个通道:

[11111111      
 10000001
 10000001
 10000001
 10000001
 10000001
 10000001
 10000001] 
[00000000
 01011110
 01000000
 01100000
 01000000
 01000000
 00000000
 00000000]
[00000000
 00100000
 00111000
 00010000
 00110000
 00100000
 01100000
 010000
评论 12
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值