multi label loss function

这篇博客探讨了多标签分类问题,建议将问题转化为多个二分类任务。推荐使用tanh+hinge损失、sigmoid+汉明损失或sigmoid+focal损失。特别是在样本标签分布不均匀的情况下,focal loss能有效改进模型性能。作者引用了一篇论文并提供了Kaggle资源链接以供进一步研究。
摘要由CSDN通过智能技术生成

基本思想还是转化为多个二分类

https://github.com/keras-team/keras/issues/10371

For the multi-label classification, you can try tanh+hinge with {-1, 1} values in labels like (1, -1, -1, 1).
Or sigmoid + hamming loss with {0, 1} values in labels like (1, 0, 0, 1).
In my case, sigmoid + focal loss with {0, 1} values in labels like (1, 0, 0, 1) worked well.
You can check this paper https://arxiv.org/abs/1708.02002.

比如batch为32 sample的,8个多标签输出,可以等价看成32*8个sample的二分类问题,自然这32*8个sample正负样本比很容易不均(如果每个sample只有1,2个标签的话)。这是focal loss就可以发挥很大的作用了

https://www.kaggle.com/rejpalcz/focalloss-for-keras

class FocalLoss(nn.Module):
    def __init__(self, gamma=2
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值