最优化算法—(1)基础理论关键

最优化算法—(1)基础理论关键

1.数学模型

在这里插入图片描述

 

1.1.线性规划问题

       决策变量为连续型,目标函数和约束条件为线性函数。
 
在这里插入图片描述

 

1.2.非线性规划问题

       决策变量为连续型,目标函数或约束条件为非线性函数。
    举例:
在这里插入图片描述

 

1.3.整数规划问题

       一部分或全部决策变量必须取整数值的规划问题称为整数规划。
    a.纯整数规划:全部决策变量都为整数;
    b.混合整数规划:决策变量有一部分是整数值,另一部分不是整数;
    c.0-1整数规划:决策变量只能取0或1的整数规划。

       整数线性规划模型(一个线性规划模型中的部分或全部决策变量为整数)一般形式:
 
在这里插入图片描述

  

2.最优化模型分类

       实际问题建模时,需根据变量类型、参数类型、目标数量、有无约束来选择合适的模型,再根据具体的模型来匹配对应的实现算法。
在这里插入图片描述

       具体模型的讲解在后续的文章中更新。
 
 

3.凸函数

3.1.为什么要研究凸优化问题

       因为凸优化问题具有非常好的性质,如果目标函数是凸函数,并且可行域是凸集,局部最优即是全局最优,且最优解满足:

在这里插入图片描述
 

3.2.如何判定凸函数

3.2.1.根据定义判断

 
在这里插入图片描述
 
在这里插入图片描述
在这里插入图片描述

 

3.2.2.根据定理判断

 
在这里插入图片描述
在这里插入图片描述
 

3.2.3.matlab工具画图

       利用matlab分析工具,在一个自定义范围求解函数值,得到函数的曲线如下,很明显该函数为凸函数。
在这里插入图片描述

% matlab代码
x1 = 0:100;
x2 = -50:50;
f = x1.*x1 - 2*x1.*x2 + 2*x2.*x2 + 3*x2;
figure
plot3(x1,x2,f,'LineWidth',5)
grid on
title('f = x1.*x1 - 2*x1.*x2 + 2*x2.*x2 + 3*x2')

 
 

4.最优化算法分类

在这里插入图片描述

       具体的算法讲解及实现在后续的文章中更新。
 

4.1.费马引理

       通过证明可导函数的每一个可导的极值点都是驻点(函数的导数在该点为0),该定理给出了一个求出可微函数的最大值和最小值的方法。
 
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

深耕智能驾驶

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值