Python:基于pytorch深度学习框架实现“多层感知机”(附带详细注释说明)+ 训练结果 + 理论详解

  1. 相关理论知识
    【Adam】优化算法浅析
    多层感知机入门
    N折交叉验证的作用(如何使用交叉验证)
  2. 用多层感知机实现房价预测
''' 多层感知机:房价预测 '''
import hashlib
import os
import tarfile
import zipfile
import requests

DATA_HUB = dict()  # 建立字典DATA_HUB, 它可以将数据集名称的字符串映射到数据集相关的二元组上, 这个二元组包含数据集的url和验证文件完整性的sha-1密钥
DATA_URL = 'http://d2l-data.s3-accelerate.amazonaws.com/'  # 地址为DATA_URL的站点


# 下面的download函数用来下载数据集, 将数据集缓存在本地目录(默认情况下为../data)中, 并返回下载文件的名称。
# 如果缓存目录中已经存在此数据集文件,并且其sha-1与存储在DATA_HUB中的相匹配, 我们将使用缓存的文件,以避免重复的下载。
def download(name, cache_dir=os.path.join('..', 'data')):
    """下载一个DATA_HUB中的文件,返回本地文件名"""
    assert name in DATA_HUB, f"{name} 不存在于 {DATA_HUB}"
    url, sha1_hash = DATA_HUB[name]
    os.makedirs(cache_dir, exist_ok=True)
    fname = os.path.join(cache_dir, url.split('/')[-1])
    if os.path.exists(fname):
        sha1 = hashlib.sha1()
        with open(fname, 'rb') as f:
            while True:
                data = f.read(1048576)
                if not data:
                    break
                sha1.update(data)
        if sha1.hexdigest() == sha1_hash:
            return fname  # 命中缓存
    print(f'正在从{url}下载{fname}...')
    r = requests.get(url, stream=True, verify=True)
    with open(fname, 'wb') as f:
        f.write(r.content)
    return fname


def download_extract(name, folder=None):  # @save
    """下载并解压zip/tar文件"""
    fname = download(name)
    base_dir = os.path.dirname(fname)
    data_dir, ext = os.path.splitext(fname)
    if ext == '.zip':
        fp = zipfile.ZipFile(fname, 'r')
    elif ext in ('.tar', '.gz'):
        fp = tarfile.open(fname, 'r')
    else:
        assert False, '只有zip/tar文件可以被解压缩'
    fp.extractall(base_dir)
    return os.path.join(base_dir, folder) if folder else data_dir


def download_all():  # @save
    """下载DATA_HUB中的所有文件"""
    for name in DATA_HUB:
        download(name)


import numpy as np
import pandas as pd
import torch
from torch import nn
from d2l import torch as d2l

DATA_HUB['kaggle_house_train'] = (  # @save
    DATA_URL + 'kaggle_house_pred_train.csv',
    '585e9cc93e70b39160e7921475f9bcd7d31219ce')

DATA_HUB['kaggle_house_test'] = (  # @save
    DATA_URL + 'kaggle_house_pred_test.csv',
    'fa19780a7b011d9b009e8bff8e99922a8ee2eb90')
train_data = pd.read_csv(download('kaggle_house_train'))
test_data = pd.read_csv(download('kaggle_house_test'))
# 训练数据集包括1460个样本,每个样本80个特征和1个标签, 而测试数据集包含1459个样本,每个样本80个特征。
print(train_data.shape)
print(test_data.shape)
print(train_data.iloc[0:4, [0, 1, 2, 3, -3, -2, -1]])  # 打印四个样本的前四个和最后两个特征,以及相应标签(房价)

# 在每个样本中,第一个特征是ID, 这有助于模型识别每个训练样本。
# 虽然这很方便,但它不携带任何用于预测的信息。 因此,在将数据提供给模型之前,我们将其从数据集中删除。
all_features = pd.concat((train_data.iloc[:, 1:-1], test_data.iloc[:, 1:]))
# 将训练数据中的所有特征除以索引列以外的所有列(从第二列到倒数第一列)和测试数据中的所有特征除以索引列以外的所有列(从第二列到倒数第一列)连接起来,并赋值给变量all_features。

'''  数据预处理  '''
# 若无法获得测试数据,则可根据训练数据计算均值和标准差
numeric_features = all_features.dtypes[all_features.dtypes != 'object'].index
# 通过all_features.dtypes != 'object'过滤掉all_features中非数值类型的列,然后利用索引操作将得到的结果赋值给numeric_features
all_features[numeric_features] = all_features[numeric_features].apply(lambda x: (x - x.mean()) / (x.std()))
# 对所有数据进行标准化
all_features[numeric_features] = all_features[numeric_features].fillna(0)
# 在标准化数据之后,所有均值消失,因此我们可以将缺失值设置为0

all_features = pd.get_dummies(all_features, dummy_na=True)
# 使用get_dummies函数对all_features进行one-hot编码,其中dummy_na参数为True表示当某一特征是NaN时也要创建相应的虚拟类别。最后将处理后的结果赋值给变量all_features。
print(all_features.shape)

n_train = train_data.shape[0]
train_features = torch.tensor(all_features[:n_train].values.astype(float), dtype=torch.float32)
# all_features[:n_train].values数组里的元素是object类型,无法直接将这种类型转换成tensor,要先强制转换成float类型:.astype(float)
test_features = torch.tensor(all_features[n_train:].values.astype(float), dtype=torch.float32)
train_labels = torch.tensor(train_data.SalePrice.values.reshape(-1, 1), dtype=torch.float32)
# train_data.SalePrice.values.reshape(-1, 1)把数据转成一列

''' 开始训练 '''
loss = nn.MSELoss()  # 定义平方误差和损失函数
in_features = train_features.shape[1]


def get_net():
    net = nn.Sequential(nn.Linear(in_features, 1))  # 线性模型
    return net


def log_rmse(net, features, labels):
    # 为了在取对数时进一步稳定该值,将小于1的值设置为1
    clipped_preds = torch.clamp(net(features), 1, float(
        'inf'))  # torch.clamp(input, min, max) 是 PyTorch 中的一个函数,用于将输入 tensor 的值限制在指定的范围内。该函数会返回一个新的 tensor,其中每个元素都等于 input tensor 的相应元素,但被限制在给定的 min 和 max 值之间。如果输入的值小于 min,则输出为 min;如果输入的值大于 max,则输出为 max。
    rmse = torch.sqrt(loss(torch.log(clipped_preds),
                           torch.log(labels)))  # 预测价格的对数与真实标签价格的对数之间的均方根误差
    return rmse.item()


# 训练
def train(net, train_features, train_labels, test_features, test_labels,
          num_epochs, learning_rate, weight_decay, batch_size):
    train_ls, test_ls = [], []
    train_iter = d2l.load_array((train_features, train_labels), batch_size)
    # 这里使用的是Adam优化算法
    optimizer = torch.optim.Adam(net.parameters(), lr=learning_rate, weight_decay=weight_decay)
    for epoch in range(num_epochs):
        for X, y in train_iter:
            optimizer.zero_grad()
            l = loss(net(X), y)
            l.backward()
            optimizer.step()
        train_ls.append(log_rmse(net, train_features, train_labels))
        if test_labels is not None:
            test_ls.append(log_rmse(net, test_features, test_labels))
    return train_ls, test_ls


# K折交叉验证
def get_k_fold_data(k, i, X, y):
    assert k > 1
    fold_size = X.shape[0] // k
    X_train, y_train = None, None
    for j in range(k):
        idx = slice(j * fold_size, (j + 1) * fold_size)
        X_part, y_part = X[idx, :], y[idx]
        if j == i:
            X_valid, y_valid = X_part, y_part
        elif X_train is None:
            X_train, y_train = X_part, y_part
        else:
            X_train = torch.cat([X_train, X_part], 0)
            y_train = torch.cat([y_train, y_part], 0)
    return X_train, y_train, X_valid, y_valid


# 当我们在\(K\)折交叉验证中训练\(K\)次后,返回训练和验证误差的平均值。
def k_fold(k, X_train, y_train, num_epochs, learning_rate, weight_decay, batch_size):
    train_l_sum, valid_l_sum = 0, 0
    for i in range(k):
        data = get_k_fold_data(k, i, X_train, y_train)
        net = get_net()
        train_ls, valid_ls = train(net, *data, num_epochs, learning_rate, weight_decay, batch_size)
        train_l_sum += train_ls[-1]
        valid_l_sum += valid_ls[-1]
        if i == 0:
            d2l.plot(list(range(1, num_epochs + 1)), [train_ls, valid_ls],
                     xlabel='epoch', ylabel='rmse', xlim=[1, num_epochs],
                     legend=['train', 'valid'], yscale='log')
        print(f'折{i + 1},训练log rmse{float(train_ls[-1]):f}, '
              f'验证log rmse{float(valid_ls[-1]):f}')
    return train_l_sum / k, valid_l_sum / k


# * k: 这是一个整数参数,表示数据集需要分成多少个折叠(也称为“折”)。在这个例子中,我们将数据集分成 5 个部分。
# * num_epochs: 这是一个整数参数,表示训练模型所需的迭代次数。在这个例子中,我们将模型训练 100 次。
# * lr: 这是一个浮点数参数,表示模型的学习率,控制模型更新权重的速度。在这个例子中,模型的学习率为 5。
# * weight_decay: 这是一个浮点数参数,表示正则化项中的权重衰减。它用于防止过拟合,可以通过调整超参数来改进模型性能。在这个例子中,权重衰减设置为 0。
# * batch_size: 这是一个整数参数,表示每次训练使用的样本数量。在这个例子中,我们每次训练使用 64 个样本。
# k_fold 是一个函数,它将数据集划分为 k 份,并对每一部分执行相同的训练和验证过程。
k, num_epochs, lr, weight_decay, batch_size = 5, 100, 10, 0.0, 64
train_l, valid_l = k_fold(k, train_features, train_labels, num_epochs, lr, weight_decay, batch_size)
print(f'{k}-折验证: 平均训练log rmse: {float(train_l):f}, 'f'平均验证log rmse: {float(valid_l):f}')

  1. 代码运行结果
(1460, 81)
(1459, 80)
   Id  MSSubClass MSZoning  LotFrontage SaleType SaleCondition  SalePrice
0   1          60       RL         65.0       WD        Normal     208500
1   2          20       RL         80.0       WD        Normal     181500
2   3          60       RL         68.0       WD        Normal     223500
3   4          70       RL         60.0       WD       Abnorml     140000
(2919, 330)1,训练log rmse0.148924, 验证log rmse0.1471242,训练log rmse0.145217, 验证log rmse0.1636333,训练log rmse0.143669, 验证log rmse0.1486074,训练log rmse0.147933, 验证log rmse0.1464445,训练log rmse0.142516, 验证log rmse0.173860
5-折验证: 平均训练log rmse: 0.145652, 平均验证log rmse: 0.155934
  • 8
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
对于基于PyTorch多层感知机(Multilayer Perceptron,MLP)多输入的回归预测问题,可以按照以下步骤进行实现: 1. 导入必要的库和模块: ```python import torch import torch.nn as nn import torch.optim as optim import pandas as pd from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler ``` 2. 加载和预处理数据: ```python # 读取数据 data = pd.read_csv('data.csv') # 分离特征和标签 X = data.iloc[:, :13].values y = data.iloc[:, 13].values # 数据标准化 scaler = StandardScaler() X = scaler.fit_transform(X) # 划分训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) ``` 3. 定义多层感知机模型: ```python class MLP(nn.Module): def __init__(self, input_size): super(MLP, self).__init__() self.fc1 = nn.Linear(input_size, 64) self.fc2 = nn.Linear(64, 32) self.fc3 = nn.Linear(32, 1) def forward(self, x): x = torch.relu(self.fc1(x)) x = torch.relu(self.fc2(x)) x = self.fc3(x) return x model = MLP(input_size=13) ``` 4. 定义损失函数和优化器: ```python criterion = nn.MSELoss() optimizer = optim.Adam(model.parameters(), lr=0.001) ``` 5. 定义训练循环: ```python num_epochs = 100 for epoch in range(num_epochs): model.train() inputs = torch.tensor(X_train, dtype=torch.float32) targets = torch.tensor(y_train, dtype=torch.float32) optimizer.zero_grad() outputs = model(inputs) loss = criterion(outputs, targets) loss.backward() optimizer.step() if (epoch+1) % 10 == 0: print(f'Epoch {epoch+1}/{num_epochs}, Loss: {loss.item():.4f}') ``` 在训练循环中,我们将输入和目标转换为PyTorch张量,并执行前向传播、计算损失、反向传播和优化器的更新。 6. 模型评估: ```python model.eval() with torch.no_grad(): inputs = torch.tensor(X_test, dtype=torch.float32) targets = torch.tensor(y_test, dtype=torch.float32) outputs = model(inputs) test_loss = criterion(outputs, targets) print(f'Test Loss: {test_loss.item():.4f}') ``` 这段代码计算了测试集上的损失,用于评估模型的性能。 参数含义和调参解释如下: - `input_size`:输入特征的维度,本例中为13。 - `nn.Linear(input_size, output_size)`:定义一个线性层,其中`input_size`为输入特征的维度,`output_size`为输出特征的维度。 - `nn.ReLU()`:ReLU激活函数,用于引入非线性变换。 - `nn.MSELoss()`:均方误差损失函数,用于回归问题。 - `optim.Adam(model.parameters(), lr=0.001)`:Adam优化器,用于参数更新。 - `num_epochs`:训练的轮数,可以根据实际情况进行调整。 - `test_size=0.2`:将数据集划分为训练集和测试集,测试集占总数据集的20%。 - `optimizer.zero_grad()`:梯度清零,防止梯度累积。 - `loss.backward()`:计算损失相对于模型参数的梯度。 - `optimizer.step()`:更新模型参数。 调参时可以尝试调整以下参数: - 学习率(lr):控制参数更新的步长,如果学习率过大,模型可能无法收敛;如果学习率过小,模型收敛速度可能过慢。 - 隐藏层的神经元数量:可以尝试增加或减少隐藏层的神经元数量,以寻找合适的模型复杂度。 - 训练轮数(num_epochs):增加训练轮数可能会提高模型性能,但也容易导致过拟合。 请注意,以上代码仅为示例,实际调参时还需根据具体问题和数据集的特点进行调整。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

深耕智能驾驶

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值