自动驾驶---大佬对端到端以及L4自动驾驶的思考

1 前言

        在上篇博客《自动驾驶---苏箐对智驾产品的思考》中,已经了解过地平线专家苏箐对自动驾驶未来的思考,今天这篇博客可以让读者朋友们看看另一位大佬的思考。

        轻舟智行在2024年5月份完成了为头部新势力车企客户NOA方案量产交付上车近40万,成为兼具规模化量产经验、交付量行业领先的中高阶智驾解决方案的提供商。其中,头部新势力车企客户,即是理想汽车,理想汽车智驾产品“理想AD”有两个产品,分别对应的是“AD PRO”和“AD MAX”,其中,AD MAX具备城区和高速NOA功能,由理想智驾团队自研,AD PRO具备高速NOA功能,搭载轻舟智航方案

        侯聪本科毕业于清华大学自动化系,研究生专为计算机系,此后在美国佐治亚理工学院取得计算机科学博士学位。2013年一毕业,就加入了Google。在谷歌任职期间,侯聪被推荐到Google X实验室的无人车项目组,负责感知系统。而后,谷歌在2016年拆分无人车项目组,Waymo正式成立,侯聪也成为了Waymo最早的一批工程师之一。

        本篇博客也是自动驾驶早期从业者&创业者---侯聪,在经过多年的沉淀之后,对自动驾驶未来技术和前景的一些思考,不仅包括技术方面,还包括商业的角度。对于很多自动驾驶行业的人来说,包括笔者自己,多多少少都是有些帮助的,有助于看清未来的职业发展。

2 端到端的思考

        2025年1月16日,轻舟智航2025安全智驾媒体沟通会后,有相关媒体对侯聪进行了采访,其中包括不少有意思的观点,供各位读者朋友思考。

        L4级自动驾驶要实现完全的商业化运营,至少要到2030年。

        端到端,纯视觉等技术路线是否是最优解?

        特斯拉FSD和Waymo比,哪家更强?

        国内普遍的L2+级水平和特斯拉相比,存在代际差?

        特斯拉FSD进入中国是否能够顺利落地等等

2.1 L4的未来在哪里

        很多人对自动驾驶L4的预期都太乐观了。虽然我觉得乐观点本身也没错,只有乐观才能把事情往前推。当年马斯克也犯过一样的错误,他从很早的时候就开始说做L4,但是一直没有实现,现在说明年会推出来一个车型(Cybercab),但我估计还是会delay。

        他应该还是寄希望在第五代硬件,我估计他在3.0遇到了瓶颈,因为模型容量有限,解决长尾问题时会出现其他问题,就是解决了这边的问题,那边就出现问题。他的算力和算法容量有限,就会出现这样一个问题。

        其实反过来印证了智驾的硬件设计,无论是传感器还是芯片,都由长尾问题,而不是一般性问题决定的。我认为国内的L4要在2030年之后,才能够大规模商业化运营。

        我刚从美国回来,现在真的到处都是Waymo的无人驾驶车,在旧金山任何偏远的地方,都能看到这个车,可能还会连着过去好几辆。最新的数据表明,Waymo的打车量已经超过Lyft,仅次于Uber,我估计迟早会超过Uber

        我坐了一趟觉得还是有挺多亮点的,包括前面有车要停到路边,可能会有倒车的情况,Waymo在后面会自动向后倒,给前车让出一个空间,等它停进去再向前走。其实这个问题在我离开Waymo的时候就有很多反馈了,当时的车辆还会顶到前面,让前车倒不了,两辆车就卡在这,但是现在这个问题解决了。大家在旧金山有机会一定要再试一试这个车。

2.2 端到端不是实现L4的最终解

        端到端技术本身是有价值的,但是只靠端到端做L4是不可行的,它可能只是L4架构里的一个技术点,在一些决策性的问题上,可能确实会比传统的方案更好,它对信息的利用更加充分,信息的损失更少。但它的问题在于,完全靠数据驱动去解决问题,是解不完的,而且到一定程度还是会碰到瓶颈。

        所以L4的市场是很不一样的,大家可能没有想过,Waymo为什么用这么重的CPU做无人驾驶,大家在说算力的时候,都是讲GPU或者推理的算力,但是从来没有人说你的CPU是多少,Waymo用这么大算力的CPU,就是因为需要很多冗余,同时需要一些规则去保证它的准确性。

        如果真的什么都靠模型,什么都靠模型,总有些问题解决起来成本巨高,所以解决长尾问题不能一味地全部部署到数据模型上,有些问题按规则解其实反倒更快。

        这个行业太多营销了,大家可能存在鄙视链。我再举一个例子,地图可能也在鄙视链里面,无图的鄙视有图的,Waymo其实还是用有图的,我相信L2走下去,可能最后还是需要一些地图的支持。当时大家鄙视地图,是因为在那个阶段,大家追求的目标是我哪里都能开,当时如果太依赖地图的话,地图本身确实有缺陷。

        但是当你的技术迭代,把地图当成先验,而非增值的时候,你后续发现有些问题,还真的要靠地图才能解决。

        这点其实也是符合第一性原理,对于人来说,你熟悉这条路和不熟悉,是不一样的。当你熟悉这条路的时候,你知道什么时候应该变道,什么时候应该提早去做什么决策,这个先验是很有价值的。

        但是如果你没有,至少以目前的技术架构,你很难具备这样一个输入模式。我们管这种输入模式叫记忆行车,实际上也是通过记忆形式把它记下来,还是建了一个图。所以我相信未来地图信息还是会重返智驾方案,只是那个时候它的地图使用方式和之前不一样。

        所以很多东西还是有用的,你还是要用,而不是为了追求更高阶,就认为无图一定比有图好,端到端就已经打败了规则,至少在国内的L4市场肯定不能这么做,L2的话我相信最好还是能够把它们融合在一起,看谁发挥的比例更大。

2.3 Waymo VS 特斯拉

        今天大家都在关心Waymo和特斯拉关于L4的对比,我首先觉得二者目标不一样。

        Waymo的目标是,我就要做一个Robotaxi的服务,就要看市场。比如美国的打车市场主要集中在几个城市里面,因为美国的乡下或者偏远地区,这种需求很少,所以是由市场向导来做这个事情,我只需要搞定这几个城市,拿下多一半的市场份额就够了,边际收益也会比较低。

        特斯拉是卖车的逻辑,所以他肯定要适配美国大部分场景,他要把这个东西做的越来越好,帮他去卖车,同时他也希望走向L4,靠这个故事去驱动销量和内部研发。我有一些朋友在特斯拉工作,马斯克经常会找他们去讨论一些具体的问题,他特别喜欢讨论这些业务。

        这个相对来说,其实就难很多,第一他要解决更多的长远问题;第二个,成本真的是很大的约束,他要卖车,所以传感器不能做的成本很高,这导致他只能在城市上去不断探索,当然这也倒逼他在这方面越来越好。

        但是我现在问还在Waymo的前同事,他们都认为没有激光雷达是做不了L4的,如果只靠视觉,有太多问题是解决不了的。

        但是前两天李想不是也说,他相信马斯克如果在国内做智驾的话,他一定也会选择激光雷达,大家如果真的把安全作为一个很重要的目标,国内如果没有激光雷达的话,确实容易出问题。

        所以特斯拉想要做到L4,需要转变思路,马斯克曾经说过一些话,比如“用激光雷达的都是傻逼”,后面可能要打脸。因为当时是没有成熟的情况,硬件成本比较高,其实是没得用。但是当激光雷达足够好,足够便宜的时候,我相信他还是会回来用的。而且当他把AI能力推到极致,发现推不动的时候,可能也会用激光雷达。

        我自己也经常开特斯拉,在美国也经常遇到一些情况,逆光、下雨,甚至早上出门,因为有露水,我要开十分钟甚至二十分钟以上,露水才能被吹干。如果露水要是在玻璃里面就没办法了,只能晒,这种情况就不允许我打开FSD。这是很典型的一个问题,如果你这块做不好的话,很难实现可靠的运营。

        这次我去CES,我的一些朋友和我说,Waymo在第六代的车上虽然做了一些降本操作,产品的数量减少了一些,但是它的去污清洁、盲区的设计,依然是特斯拉不具备的。

        我说一个有意思的事情,特斯拉推崇第一性原理,说人能靠眼睛开车,你的视觉就能开车。但他忽略了一个事实,人能开,因为人是会动的动物,有脖子,有身体。大家开车都会遇到,比如说前面(玻璃)上有一点脏了,或者这边特别滑,这时候你会活动你的身体去解决这个问题,但是特斯拉的相机是不具备这种能力的,一个机器人坐在车里,才应该是第一性能原理。怎么解决这个问题?要么你把清洁做到位,要么你把冗余做到位。

        这些年,行业里一直存在着严重的信息不对称现象,绝大多数的从业者,包括投资人、媒体,对于L4的研究不够深,甚至曾经一度去diss Waymo,说Waymo不行,但特斯拉还可以。我觉得至少在当前,为什么Waymo可以去大量运营,但特斯拉还不行,二者依然还有一些差距的,可能存在5年以上的差距。

2.4 国内的L2+对比特斯拉

        从整体体验上,现在是没办法一点一点比的,毕竟国内还没有推出FSD,但是从技术粘性上来讲的话,是这样的。

        特斯拉我也认识一些朋友,首先团队确实很厉害,也很精英化,他的人并不是那么多,前两年可能只有200人的规模,现在是三四百人差不多。(特斯拉这个人效确实很夸张)

        这么点人,他的研发效率和在算力数据上的投入,是国内没法比的。第一他们有钱敢投,第二是没有限制,美国现在卡这么严,我们买不到这么大的算力,而且特斯拉也自研了Dojo。(FSD进入中国后)按他的技术框架,只要把数据这块做好,(顺利落地)还是有希望的。因为他的技术本身没有那么大缺陷,但是的确他的产品精益程度(是不够的),因为他们没有那么多人,做不了那么细。

        我相信特斯拉的产品在精细度上,和华为肯定是有差距的,比如停进这个车位,旁边有辆车或者有堵墙的时候,车什么时候应该偏一点,这种体验都很细。而且像Autopark,我记得一年前只有在搭载毫米波雷达的车上才有这个功能,后来纯视觉之后就都禁掉了,因为没有做的很成熟。

        还有一个问题是什么,他的相机其实就是7、8个摄像头,后项倒车有一个鱼眼摄像头,左右前是没有鱼眼的,这导致在泊车的时候,首先没有一个好的视角能看到正下方的东西,下面肯定是有盲区的,只能通过车辆运行过程中,用一些时序上记忆的能力,去记忆某些地方的东西,传感器本身会有一些不足。

        我觉得在国内,泊车场景会更加复杂,比起国内的车企他天生会有一些劣势,能不能完全靠算法补齐,在相同的技术能力下,我相信还是有一面会做的更好一些。

        特斯拉现在和百度合作解决一些数据问题,除了解决数据合规的问题,还有数据训练,他在国内显然没有在美国那么充沛的算力训练,把美国的数据训练之后可以拿到国内使用,但是这样做是否能够满足需求,还存在一些不确定性。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

智能汽车人

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值