1 前言
IPM(Inverse Perspective Mapping,逆透视变换)图的历史可以追溯到计算机视觉和图像处理领域的发展。逆透视变换是一种用于消除图像中透视效应的技术,使得原本由于透视产生的形变得以纠正,进而更准确地描述和理解图像中的场景。比如在行车中的车道线检测,泊车中的常见障碍物检测,自动驾驶感知最开始的方案基本都离不开IPM图。
早期,自动驾驶系统主要依赖于传统的2D感知算法,这些算法通常从单张图像(或者IPM图)中检测或分割目标。然而,随着自动驾驶技术的发展,对车辆周围环境感知的需求越来越高(比如IPM图拼接处的检测准确度较差),需要更全面地理解车辆周围的目标和障碍物。
因此,研究者们开始探索如何将来自不同摄像头和传感器的数据融合到一个统一的视图中,BEV(Bird's Eye View,鸟瞰图)的概念就是在这样的背景下提出的。通过将来自多个摄像头的数据投影到一个共享的BEV空间中,可以创建一个从上方俯视的二维图像,其中包含了车辆周围环境中的所有目标和障碍物。随着特斯拉将BEV技术量产发布后,国内的自动驾驶公司感知模块也在逐步切换到BEV方案。
2 内容介绍
在自动驾驶感知中,IPM