用于风控模型的九种数据维度(常用的金融数据)

前言:依赖于大数据和人工智能的发展,金融行业的发展也是得到了蓬勃发展,互联网金融下的风控问题也逐渐成为了焦点。下面先先介绍一下前储知识,重点阐述一下互联网中常用的九种维度的金融数据。

—————— 参考以下博客:https://blog.csdn.net/liberty_xm/article/details/53183648

大数据能够进行数据变现的商业模式目前就是两个,一个是精准营销,典型的场景就是商品推荐和精准广告投放;另一个就是大数据风控,典型的场景是互联网金融的大数据风控。

金融的本质是风险管理,风控是所有金融业务的核心。典型的金融借贷业务例如抵押贷款、消费贷款、P2P、供应链金融、以及票据融资都需要数据风控欺诈用户及评估用户信用等级。

传统的金融风控主要利用了信用属性强大的金融数据,一般采用20个纬度左右的数据,利用评分来识别客户的还款能力和还款意愿。信用相关程度强的数据维度10个左右,包括:

年龄、职业、收入、学历、工作单位、借贷情况、房产、汽车、单位、还贷记录等,金融企业参考用户提交的信息和从外部获取的数据进行信用评分的构建,对每个申请人打一个信用评分分数,依据该信用评分分数来决定是否贷款以及贷款额度[互金涉及:期次、利率、额度]。其他同信用相关的数据还有区域、产品、理财方式、行业、缴款方式、缴款记录、金额、时间、频率等。

互联网金融的大数据风控并不是完全改变传统风控的数据来源和方法,实际是丰富传统金融风控的数据纬度。互联网金融风控中,首先还是利用信用属性强的金融数据,判断借款人的还款能力和还款意愿,然后再利用信用属性稍弱的行为数据进行补充,一般是利用数据的关联分析来判断借款人的信用情况,借助数据模型来揭示某些行为特征和信用风险之间的关系。AND 互联网金融公司利用大数据进行风控时,都是利用多维度数据来识别借款人风险。同信用相关的数据越多地被用于借款人风险评估(信用数据丰富),借款人的信用风险就被揭示的更充分,信用评分就会更加客观,接近借款人的实际风险。常用的互联网金融数据风控

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值