第4章 Python 数字图像处理(DIP) - 频率域滤波5 - 二变量函数的傅里叶变换、图像中的混叠、二维离散傅里叶变换及其反变换

二变量函数的傅里叶变换

二维冲激及其取样性质

两个连续变量的冲激函数定义为:
δ ( t , z ) = { 1 , t = z = 0 0 , others (4.52) \delta(t, z) = \begin{cases} 1, & t=z=0 \\ 0, & \text{others} \end{cases} \tag{4.52} δ(t,z)={1,0,t=z=0others(4.52)
∫ − ∞ ∞ ∫ − ∞ ∞ δ ( t , z ) d t d z (4.53) \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \delta(t, z) \text{d}t \text{d}z\tag{4.53} δ(t,z)dtdz(4.53)

二维冲激在积分下展现了取样性质
∫ − ∞ ∞ ∫ − ∞ ∞ f ( t , z ) δ ( t , z ) d t d z   = f ( 0 , 0 ) (4.54) \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(t,z) \delta(t, z) \text{d}t \text{d}z\ = f(0, 0) \tag{4.54} f(t,z)δ(t,z)dtdz =f(0,0)(4.54)
一般的情况
∫ − ∞ ∞ ∫ − ∞ ∞ f ( t , z ) δ ( t − t 0 , z − z 0 ) d t d z   = f ( t 0 , z 0 ) (4.55) \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(t,z) \delta(t - t_0, z - z_0) \text{d}t \text{d}z\ = f(t_0, z_0) \tag{4.55} f(t,z)δ(tt0,zz0)dtdz =f(t0,z0)(4.55)

二维离散单位冲激定义为
δ ( x , y ) = { 1 , x = y = 0 0 , others (4.56) \delta(x, y) = \begin{cases} 1, & x=y=0 \\ 0, & \text{others} \end{cases} \tag{4.56} δ(x,y)={1,0,x=y=0others(4.56)
取样性质为
∑ − ∞ ∞ ∑ − ∞ ∞ f ( x , y ) δ ( x − x 0 , y − y 0 ) d x d y   = f ( x 0 , y 0 ) (4.58) \sum_{-\infty}^{\infty} \sum_{-\infty}^{\infty} f(x,y) \delta(x - x_0, y - y_0) \text{d}x \text{d}y\ = f(x_0, y_0) \tag{4.58} f(x,y)δ(xx0,yy0)dxdy =f(x0,y0)(4.58)

二维连续傅里叶变换对

F ( μ , v ) = ∫ − ∞ ∞ ∫ − ∞ ∞ f ( t , z ) e − j 2 π ( μ t + v z ) d t d z (4.59) F(\mu, v) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(t, z) e^{-j2\pi(\mu t + vz)} \text{d}t \text{d}z\tag{4.59} F(μ,v)=f(t,z)ej2π(μt+vz)dtdz(4.59)

f ( t , z ) = ∫ − ∞ ∞ ∫ − ∞ ∞ F ( μ , v ) e j 2 π ( μ t + v z ) d μ d v (4.60) f(t, z) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} F(\mu, v) e^{j2\pi(\mu t + vz)} \text{d}\mu \text{d}v\tag{4.60} f(t,z)=F(μ,v)ej2π(μt+vz)dμdv(4.60)

μ \mu μ v v v是频率变量,涉及图像时, t t t z z z解释为连续空间变量。变量 μ \mu μ v v v的域定义了连续频率域

# 二维盒式函数的傅里叶变换
height, width = 128, 128
m = int((height - 1) / 2)
n = int((width - 1) / 2)
f = np.zeros([height, width])
# T 控制方格的大小
T = 5
f[m-T:m+T, n-T:n+T] = 1

fft = np.fft.fft2(f)
shift_fft = np.fft.fftshift(fft)
amp = np.log(1 + np.abs(shift_fft))

plt.figure(figsize=(16, 16))
plt.subplot(2, 2, 1), plt.imshow(f, 'gray'), plt.title('Box filter'), plt.xticks([]), plt.yticks([])
plt.subplot(2, 2, 2), plt.imshow(amp, 'gray'), plt.title('FFT Spectrum'), plt.xticks([]), plt.yticks([])

# 不同的盒式函数对应的傅里叶变换
height, width = 128, 128
m = int((height - 1) / 2)
n = int((width - 1) / 2)
f = np.zeros([height, width])
T = 20
f[m-T:m+T, n-T:n+T] = 1

fft = np.fft.fft2(f)
shift_fft = np.fft.fftshift(fft)
amp = np.abs(shift_fft)
plt.subplot(2, 2, 3), plt.imshow(f, 'gray'), plt.title('Box filter'), plt.xticks([]), plt.yticks([])
plt.subplot(2, 2, 4), plt.imshow(amp, 'gray'), plt.title('FFT Spectrum'), plt.xticks([]), plt.yticks([])
plt.tight_layout()
plt.show()

在这里插入图片描述

二维取样和二维取样定理

s Δ T Δ Z ( t , z ) = ∑ m = − ∞ ∞ ∑ n = − ∞ ∞ δ ( t − m Δ T , z − n Δ Z ) (4.61) s_{\Delta T \Delta Z}(t, z) = \sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} \delta(t - m \Delta T, z - n \Delta Z) \tag{4.61} sΔTΔZ(t,z)=m=n=δ(tmΔT,znΔZ)(4.61)

在区间 [ − μ m a x , μ m a x ] [-\mu_{max}, \mu_{max}] [μmax,μmax] [ − v m a x , v m a x ] [-v_{max}, v_{max}] [vmax,vmax]建立的频率域矩形之外,函数 f ( t , z ) f(t,z) f(t,z)的傅里叶变换为零,即时,
F ( μ , v ) = 0 , ∣ μ ∣ ≥ μ m a x 且 ∣ v ∣ ≥ v m a x (4.62) F(\mu, v) = 0, \quad |\mu| \ge \mu_{max} 且|v| \ge v_{max} \tag{4.62} F(μ,v)=0,μμmaxvvmax(4.62)
称该函数为带限函数

二维取样定理:
Δ T < 1 2 μ m a x (4.63) \Delta T < \frac{1}{2\mu_{max}} \tag{4.63} ΔT<2μmax1(4.63)

Δ Z < 1 2 v m a x (4.64) \Delta Z < \frac{1}{2 v_{max}} \tag{4.64} ΔZ<2vmax1(4.64)

或者是:
1 Δ T > 2 μ m a x (4.65) \frac{1} {\Delta T} > {2\mu_{max}} \tag{4.65} ΔT1>2μmax(4.65)

1 Δ Z > 2 v m a x (4.66) \frac{1} {\Delta Z} > {2 v_{max}} \tag{4.66} ΔZ1>2vmax(4.66)

则连续带限函数 f ( t , z ) f(t,z) f(t,z)可由基一组样本无误地复原。

图像中的混叠

def get_check(height, width, check_size=(5, 5), lower=130, upper=255):
    """
    create check pattern image
    height: input, height of the image you want
    width: input, width of the image you want
    check_size: the check size you want, default is 5x5
    lower: dark color of the check, default is 130, which is dark gray, 0 is black, 255 is white
    upper: light color of the check, default is 255, which is white, 0 is black
    return uint8[0, 255] grayscale check pattern image
    """
    m, n = check_size
    black = np.zeros((m, n), np.uint8)
    white = np.zeros((m, n), np.uint8)
    black[:] = lower  # dark
    white[:] = upper  # white

    black_white = np.concatenate([black, white], axis=1)
    white_black = np.concatenate([white, black], axis=1)
    black_white_black_white = np.vstack((black_white, white_black))

    tile_times_h = int(np.ceil(height / m / 2))
    tile_times_w = int(np.ceil(width / n / 2))

    img_temp = np.tile(black_white_black_white, (tile_times_h, tile_times_w))
    img_dst = np.zeros([height, width])
    img_dst = img_temp[:height, :width]
    
    return img_dst
# 混叠
img_16 = get_check(512, 800, check_size=(16, 16), lower=10, upper=255)
img_16_show = img_16[:48, :96]
img_6 = get_check(512, 800, check_size=(6, 6), lower=10, upper=255)
img_6_show = img_6[:48, :96]

# 16 * 0.95 = 15.2
img_095 = img_16[::15, ::15]
img_095 = np.concatenate((img_095, img_095[:, 3:]), axis=1)
img_095 = np.concatenate((img_095, img_095[:, 3:]), axis=1)
img_095 = np.concatenate((img_095, img_095[:, 3:]), axis=1)
img_095 = np.concatenate((img_095, img_095[3:, :]), axis=0)
img_095 = np.concatenate((img_095, img_095[3:, :]), axis=0)
img_095 = img_095[2:50, 2:98]

# 16 * 0.48 = 7.68
img_05 = img_16[::2, ::2]  # 为了显示这里的步长选了2
img_05 = img_05[:48, :96]


fig = plt.figure(figsize=(15, 8))
plt.subplot(2, 2, 1), plt.imshow(img_16_show, 'gray', vmin=0, vmax=255), plt.xticks([]), plt.yticks([])
plt.subplot(2, 2, 2), plt.imshow(img_6_show, 'gray', vmin=0, vmax=255), plt.xticks([]), plt.yticks([])
plt.subplot(2, 2, 3), plt.imshow(img_095, 'gray', vmin=0, vmax=255), plt.xticks([]), plt.yticks([])
plt.subplot(2, 2, 4), plt.imshow(img_05, 'gray', vmin=0, vmax=255), plt.xticks([]), plt.yticks([])
plt.tight_layout()
plt.show()

在这里插入图片描述

图像重取样和刚插

在图像被取样之前,必须在前端进行搞混叠滤波,但对于违反取样定理导致的混叠效应,事实上不存在事后能降低它的抗混叠滤波的软件。多数抗混叠的功能主要是模糊数字图像,进行降低由重取样导致的其他混叠伪影,而不能降低原取样图像中的混叠。

对数字图像降低混叠,在重取样之前 需要使用低通滤波器来平滑,以衰减数字图像的高频分量。但实际上只是平滑图像,而减少了那些令人讨厌的混叠现象。

def nearest_neighbor_interpolation(img, new_h, new_w):
    """
    get nearest_neighbor_interpolation for image, can up or down scale image into any ratio
    param: img: input image, grady image, 1 channel, shape like [512, 512]
    param: new_h: new image height 
    param: new_w: new image width
    return a nearest_neighbor_interpolation up or down scale image
    """
    new_img = np.zeros([new_h, new_w])
    src_height, src_width = img.shape[:2]
    r = new_h / src_height
    l = new_w / src_width
    for i in range(new_h):
        for j in range(new_w):
            x0 = int(i / r)
            y0 = int(j / l)
            new_img[i, j] = img[x0, y0]
    return new_img
def box_filter(image, kernel):
    """
    :param image: input image
    :param kernel: input kernel
    :return: image after convolution
    """
    
    img_h = image.shape[0]
    img_w = image.shape[1]

    m = kernel.shape[0]
    n = kernel.shape[1]

    # padding
    padding_h = int((m -1)/2)
    padding_w = int((n -1)/2)

    image_pad = np.zeros((image.shape[0]+padding_h*2, image.shape[1]+padding_w*2), np.uint8)
    image_pad[padding_h:padding_h+img_h, padding_w:padding_w+img_w] = image
    
    image_convol = image.copy()
    for i in range(padding_h, img_h + padding_h):
        for j in range(padding_w, img_w + padding_w):
            temp = np.sum(image_pad[i-padding_h:i+padding_h+1, j-padding_w:j+padding_w+1] * kernel)
            image_convol[i - padding_h][j - padding_w] = temp # 1/(m * n) * temp

    return image_convol
# 抗混叠
img_ori = cv2.imread('DIP_Figures/DIP3E_Original_Images_CH04/Fig0417(a)(barbara).tif', 0)

# 先缩小图像,再放大图像
img_down = nearest_neighbor_interpolation(img_ori, int(img_ori.shape[0]*0.33), int(img_ori.shape[1]*0.33))
img_up = nearest_neighbor_interpolation(img_down, img_ori.shape[0], img_ori.shape[1])

# 先对原图像进行5x5的平均滤波,再缩小图像,再放大图像
kernel = np.ones([5, 5])
kernel = kernel / kernel.size
img_box_filter = box_filter(img_ori, kernel=kernel)
img_down_1 = nearest_neighbor_interpolation(img_box_filter, int(img_ori.shape[0]*0.33), int(img_ori.shape[1]*0.33))
img_up_1 = nearest_neighbor_interpolation(img_down_1, img_ori.shape[0], img_ori.shape[1])

fig = plt.figure(figsize=(15, 10))
plt.subplot(1, 3, 1), plt.imshow(img_ori, 'gray'), plt.xticks([]), plt.yticks([])
plt.subplot(1, 3, 2), plt.imshow(img_up, 'gray'), plt.xticks([]), plt.yticks([])
plt.subplot(1, 3, 3), plt.imshow(img_up_1, 'gray'), plt.xticks([]), plt.yticks([])

plt.tight_layout()
plt.show()

在这里插入图片描述

混叠和莫尔模式

莫尔模式是由近似等间隔的两个光栅叠加所产生的一种视觉现象。

def rotate_image(img, angle=45):
    height, width = img.shape[:2]
    if img.ndim == 3:
        channel = 3
    else:
        channel = None
        
    if int(angle / 90) % 2 == 0:
        reshape_angle = angle % 90
    else:
        reshape_angle = 90 - (angle % 90)
    reshape_radian = np.radians(reshape_angle)  # 角度转弧度
    # 三角函数计算出来的结果会有小数,所以做了向上取整的操作。
    new_height = int(np.ceil(height * np.cos(reshape_radian) + width * np.sin(reshape_radian)))
    new_width = int(np.ceil(width * np.cos(reshape_radian) + height * np.sin(reshape_radian)))
    if channel:
        new_img = np.zeros((new_height, new_width, channel), dtype=np.uint8)
    else:
        new_img = np.zeros((new_height, new_width), dtype=np.uint8)

    radian = np.radians(angle)
    cos_radian = np.cos(radian)
    sin_radian = np.sin(radian)
    # dx = 0.5 * new_width + 0.5 * height * sin_radian - 0.5 * width * cos_radian
    # dy = 0.5 * new_height - 0.5 * width * sin_radian - 0.5 * height * cos_radian
    # ---------------前向映射--------------------
    # for y0 in range(height):
    #     for x0 in range(width):
    #         x = x0 * cos_radian - y0 * sin_radian + dx
    #         y = x0 * sin_radian + y0 * cos_radian + dy
    #         new_img[int(y) - 1, int(x) - 1] = img[int(y0), int(x0)]  # 因为整体映射的结果会比偏移一个单位,所以这里x,y做减一操作。

    # ---------------后向映射--------------------
    dx_back = 0.5 * width - 0.5 * new_width * cos_radian - 0.5 * new_height * sin_radian
    dy_back = 0.5 * height + 0.5 * new_width * sin_radian - 0.5 * new_height * cos_radian
    for y in range(new_height):
        for x in range(new_width):
            x0 = x * cos_radian + y * sin_radian + dx_back
            y0 = y * cos_radian - x * sin_radian + dy_back
            if 0 < int(x0) <= width and 0 < int(y0) <= height:  # 计算结果是这一范围内的x0,y0才是原始图像的坐标。
                new_img[int(y), int(x)] = img[int(y0) - 1, int(x0) - 1]  # 因为计算的结果会有偏移,所以这里做减一操作。


#     # ---------------双线性插值--------------------
#     if channel:
#         fill_height = np.zeros((height, 2, channel), dtype=np.uint8)
#         fill_width = np.zeros((2, width + 2, channel), dtype=np.uint8)
#     else:
#         fill_height = np.zeros((height, 2), dtype=np.uint8)
#         fill_width = np.zeros((2, width + 2), dtype=np.uint8)
#     img_copy = img.copy()
#     # 因为双线性插值需要得到x+1,y+1位置的像素,映射的结果如果在最边缘的话会发生溢出,所以给图像的右边和下面再填充像素。
#     img_copy = np.concatenate((img_copy, fill_height), axis=1)
#     img_copy = np.concatenate((img_copy, fill_width), axis=0)
#     for y in range(new_height):
#         for x in range(new_width):
#             x0 = x * cos_radian + y * sin_radian + dx_back
#             y0 = y * cos_radian - x * sin_radian + dy_back
#             x_low, y_low = int(x0), int(y0)
#             x_up, y_up = x_low + 1, y_low + 1
#             u, v = np.modf(x0)[0], np.modf(y0)[0]  # 求x0和y0的小数部分
#             x1, y1 = x_low, y_low
#             x2, y2 = x_up, y_low
#             x3, y3 = x_low, y_up
#             x4, y4 = x_up, y_up
#             if 0 < int(x0) <= width and 0 < int(y0) <= height:
#                 pixel = (1 - u) * (1 - v) * img_copy[y1, x1] + (1 - u) * v * img_copy[y2, x2] + u * (1 - v) * img_copy[y3, x3] + u * v * img_copy[y4, x4]  # 双线性插值法,求像素值。
#                 new_img[int(y), int(x)] = pixel
    
    return new_img
# 混叠和莫尔模式
# 竖线原图
img_lines = np.ones([129, 129]) * 255
img_lines[:, ::3] = 0

# 旋转时使用刚内插,产生了混叠
rotate_matrix = cv2.getRotationMatrix2D((int(img_lines.shape[0]*0.5), int(img_lines.shape[1]*0.5)), -5, 1)
img_lines_r = cv2.warpAffine(img_lines, rotate_matrix, dsize=(img_lines.shape[0], img_lines.shape[1]), flags=cv2.INTER_CUBIC, borderValue=255)

# 相加后,产生的混叠更明显
img_add = img_lines + img_lines_r
img_add = np.uint8(normalize(img_add) * 255)

fig = plt.figure(figsize=(15, 10))
plt.subplot(2, 3, 1), plt.imshow(img_lines, 'gray', vmin=0, vmax=255), plt.xticks([]), plt.yticks([])
plt.subplot(2, 3, 2), plt.imshow(img_lines_r, 'gray', vmin=0, vmax=255), plt.xticks([]), plt.yticks([])
plt.subplot(2, 3, 3), plt.imshow(img_add, 'gray', vmin=0, vmax=255), plt.xticks([]), plt.yticks([])

# 格子原图
img_check = np.ones([129, 129]) * 255
img_check[::2, ::2] = 0

# 旋转时使用刚内插,产生了混叠
rotate_matrix = cv2.getRotationMatrix2D((int(img_check.shape[0]*0.5), int(img_check.shape[1]*0.5)), -5, 1)
img_check_r = cv2.warpAffine(img_check, rotate_matrix, dsize=(img_check.shape[0], img_check.shape[1]), flags=cv2.INTER_CUBIC, borderValue=255)

# 相加后,产生的混叠更明显
img_add = img_check + img_check_r
img_add = np.uint8(normalize(img_add) * 255)

plt.subplot(2, 3, 4), plt.imshow(img_check, 'gray', vmin=0, vmax=255), plt.xticks([]), plt.yticks([])
plt.subplot(2, 3, 5), plt.imshow(img_check_r, 'gray', vmin=0, vmax=255), plt.xticks([]), plt.yticks([])
plt.subplot(2, 3, 6), plt.imshow(img_add, 'gray', vmin=0, vmax=255), plt.xticks([]), plt.yticks([])

plt.tight_layout()
plt.show()

在这里插入图片描述

# 印刷采用欠取样时产生莫尔模式效应
img_ori = cv2.imread('DIP_Figures/DIP3E_Original_Images_CH04/Fig0421(car_newsprint_sampled_at_75DPI).tif', 0)

fig = plt.figure(figsize=(15, 10))
plt.subplot(1, 3, 1), plt.imshow(img_ori, 'gray'), plt.xticks([]), plt.yticks([])

plt.tight_layout()
plt.show()

在这里插入图片描述

二维离散傅里叶变换及其反变换

二维DFT
F u , v = ∑ x = 0 M − 1 ∑ y = 0 N − 1 f ( x , y ) e − j 2 π ( u x / M + v y / N ) (4.67) F_{u, v} = \sum_{x = 0}^{M - 1} \sum_{y = 0}^{N - 1} f(x, y) e^{-j2\pi(u x/M + v y /N)} \tag{4.67} Fu,v=x=0M1y=0N1f(x,y)ej2π(ux/M+vy/N)(4.67)

二维IDFT
f ( x , y ) = 1 M N ∑ u = 0 M − 1 ∑ v = 0 N − 1 F ( u , v ) e j 2 π ( u x / M + v y / N ) (4.68) f(x, y) = \frac{1}{MN}\sum_{u = 0}^{M - 1} \sum_{v = 0}^{N - 1} F(u, v) e^{j2\pi(u x /M + vy /N)} \tag{4.68} f(x,y)=MN1u=0M1v=0N1F(u,v)ej2π(ux/M+vy/N)(4.68)

上式, u = 0 , 1 , 2 , ⋯   , M − 1 u = 0, 1, 2, \cdots, M-1 u=0,1,2,,M1 v = 0 , 1 , 2 , ⋯   , N − 1 v = 0, 1, 2, \cdots, N-1 v=0,1,2,,N1 x = 0 , 1 , 2 , ⋯   , M − 1 x = 0, 1, 2, \cdots, M-1 x=0,1,2,,M1 y = 0 , 1 , 2 , ⋯   , N − 1 y = 0, 1, 2, \cdots, N-1 y=0,1,2,,N1

  • 0
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

jasneik

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值