数字信号处理知识点总结(二):傅里叶级数与变换

本篇文章主要介绍傅里叶级数和傅里叶变换的概念、作用及分类。

1. 分解与变换

对信号进行分解是为了获得比原始信号更容易处理的信号。例如:冲激分解允许一次研究时域信号的一个点,从而能更加简单地通过冲激响应来表征一个线性系统的特性;当输入一个新的信号时,就可以通过卷积的工具得到相应的系统响应。

同理,傅里叶分解中,使用正弦波和余弦波(或称为三角级数)来表征原始信号能更加的简单,因为这两个波形在线性系统中具有正弦保真性(即向一个系统中输入一个正弦信号后,系统必然向外输出一个正弦信号,该信号与原始信号相比,仅有相位和幅值发生变化,而信号的波形和频率仍保持不变)。由此,选择正弦波而没有选择其它的一些简单的波形,如方波和三角波。

信号的分解与变换从两个不同的方向描述了对信号的处理。变换是函数概念的直接扩展,不论是输入还是输出都可以包含多个数值。由此可见,变换在一定程度上比分解的范围更广,在计算机处理的角度上,变换就是一个程序,它将一批数据转变为另外一批数据。

2. 四种傅里叶级数及变换

一般针对周期信号,可以使用成谐波关系的复指数信号的加权和来表示;针对非周期信号,则可以使用不成谐波关系的复指数信号的加权积分来表示。严格上来说前者称为傅里叶级数(成谐次的),后者称为傅里叶变换,因为信号分为连续信号和离散信号,故总共分为四种表示。在不严格的情况下,可以统称为傅里叶变换。

2.1 连续时间傅里叶变换(CTFT)

非周期-连续信号沿正、负无穷方向伸展,并且不会出现周期性的重复。此类信号的变换称为连续时间傅里叶变换。代表信号有指数衰减信号和高斯信号。变换后的频谱是非周期-连续的。(以下所有公式中的ω均为角频率)
正变换:
X ( j ω ) = ∫ − ∞ + ∞ x ( t ) e − j ω t d t (1) X(j\omega ) = \int_{ - \infty }^{ + \infty } {x(t){e^{ - j\omega t}}dt} \tag{1} X(jω)=+x(t)ejωtdt(1)
逆变换:
x ( t ) = 1 2 π ∫ − ∞ + ∞ X ( j ω ) e j ω t d ω (2) x(t) = \frac{1}{ {2\pi }}\int_{ - \infty }^{ + \infty } {X(j\omega ){e^{j\omega t}}d} \omega \tag{2} x(t)=2π1+X(jω)ejωtdω(2)

2.2 连续时间傅里叶级数(CFS)

周期-连续信号按一定时间 间隔从负无穷道正无穷周而复始出现相同的波形。此类信号的分解称为连续时间傅里叶级数。代表信号有正弦波和方波。分解后的频谱是非周期-离散的。
级数表示公式为:
x ( t ) = ∑ k = − ∞ + ∞ a k e j k 2 π T 0 t (3) x(t) = \sum\limits_{k = - \infty }^{+\infty} { {a_k}{e^{jk\frac{ {2\pi }}{ { {T_0}}}t}}} \tag{3} x(t)=k=+akejkT02πt(3)
其中,复指数因子ak为:
a k =

  • 1
    点赞
  • 19
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值