数字信号处理—傅里叶变换


傅里叶变换的原理是基于三角函数的正交性的,可以说宇宙中所有的信号都是由正弦波构成的,最经典的例子就是音乐。不同的正弦函数组成不同的音符,最后音符再组成一首首不同的曲子。我在一篇文章中看到一句有关傅里叶的话,深有感触 “在这个世界上,有的事情一期一会,永不再来,并且时间始终不曾停息地将那些刻骨铭心的往昔连续的标记在时间点上。但是这些事情往往又成为了我们格外宝贵的回忆,在我们大脑里隔一段时间就会周期性的蹦出来一下,可惜这些回忆都是零散的片段,往往只有最幸福的回忆,而平淡的回忆则逐渐被我们忘却。因为,往昔是一个连续的非周期信号,而回忆是一个周期离散信号。有时候我真的会感叹傅里叶的神奇。接下来就进入正题

周期为2Π的函数展开为傅里叶

对于一个周期为2Π的函数可以写为f(x)= (x+2Π),之前提到三角函数的正交性,f(x)又可以写为

f ( x ) = ∑ n = 0 ∞ a n c o s n x + ∑ n = 0 ∞ b n s i n n x f(x)=\sum^\infty _{n=0}a_{n}cosnx+\sum^\infty _{n=0}b_{n}sinnx f(x)=n=0ancosnx+n=0bnsinnx
将a0提出来又可以写为
f ( x ) = a 0 / 2 + ∑ n = 1 ∞ a n c o s n x + ∑ n = 1 ∞ b n s i n n x f(x)=a_{0}/2+\sum^\infty _{n=1}a_{n}cosnx+\sum^\infty _{n=1}b_{n}sinnx f(x)=a0/2+n=1ancosnx+n=1bnsinnx
a 0 / 2 = a 0 c o s 0 x + b 0 s i n 0 x a_{0}/2=a_{0}cos0x+b_{0}sin0x a0/2=a0cos0x+b0sin0x
两边同时积分可得
a 0 2 = 1 π ∫ − π π f ( x ) d x \frac{a_{0}}{2}=\frac{1}{\pi }\int_{-\pi }^{\pi }f(x)dx 2a0=π1ππf(x)dx
推导过程我就不写了,也是利用积分
a n = 1 π ∫ − π π f ( x ) c o n x d x a_{n}=\frac{1}{\pi }\int_{-\pi }^{\pi }f(x)conxdx an=π1ππf(x)conxdx
b n = 1 π ∫ − π π f ( x ) s i n x d x b_{n}=\frac{1}{\pi }\int_{-\pi }^{\pi }f(x)sinxdx bn=π1ππf(x)sinxdx
上述的几个式子就组成了周期为2Π的傅里叶变换的公式

周期为2L的函数展开为傅里叶

知道了周期为2Π的傅里叶是符合变换的,那自然界中不可能只有周期是2Π的信号才可以傅里叶变换吧,所以下面就来介绍周期不为2Π的信号的傅里叶变换
取一个函数,令其周期为T=2L;于是函数就可以写为f(t)=f(t+2L);
利用换元法令
x = π L t x=\frac{\pi }{L}t x=Lπt于是
t = L π x t=\frac{L }{\pi}x t=πLx
构造一个新函数g(x)
f ( t ) = f ( L π x ) = g ( x ) f(t)=f(\frac{L }{\pi}x)=g(x) f(t)=f(πLx)=g(x)
于是又回到上节g(x)就是一个周期为2Π的函数,可以写为g(x)= g(x+2Π)。将g(x)按上节周期为2Π的函数的傅里叶展开得
g ( x ) = a 0 / 2 + ∑ n = 1 ∞ a n c o s n x + ∑ n = 1 ∞ b n s i n n x g(x)=a_{0}/2+\sum^\infty _{n=1}a_{n}cosnx+\sum^\infty _{n=1}b_{n}sinnx g(x)=a0/2+n=1ancosnx+n=1bnsinnx
带入 x = π L t x=\frac{\pi }{L}t x=Lπt c o s n x = c o s n π L t cosnx=cos\frac{n\pi }{L}t cosnx=cosLnπt s i n n x = s i n n π L t sinnx=sin\frac{n\pi }{L}t sinnx=sinLnπt g ( x ) = f ( x ) g(x)=f(x) g(x)=f(x) 1 π ∫ − π π d x = 1 π π L ∫ − π π d x = 1 L ∫ − π π d t \frac{1}{\pi }\int_{-\pi }^{\pi }dx=\frac{1}{\pi }\frac{\pi }{L}\int_{-\pi }^{\pi }dx=\frac{1}{L }\int_{-\pi }^{\pi }dt π1ππdx=π1Lπππdx=L1ππdt
得到 f ( x ) = a 0 / 2 + ∑ n = 1 ∞ a n c o s n π L t + ∑ n = 1 ∞ b n s i n n π L t f(x)=a_{0}/2+\sum^\infty _{n=1}a_{n}cos\frac{n\pi }{L}t+\sum^\infty _{n=1}b_{n}sin\frac{n\pi }{L}t f(x)=a0/2+n=1ancosLnπt+n=1bnsinLnπt a 0 = 1 L ∫ − L L f ( x ) d t a_{0}=\frac{1}{L }\int_{-L }^{L }f(x)dt a0=L1LLf(x)dt
a n = 1 L ∫ − L L c o s n π L t d t a_{n}=\frac{1}{L }\int_{-L }^{L }cos\frac{n\pi }{L}tdt an=L1LLcosLnπtdt b n = 1 π ∫ − π π f ( x ) s i n n π L t d x b_{n}=\frac{1}{\pi }\int_{-\pi }^{\pi }f(x)sin\frac{n\pi }{L}tdx bn=π1ππf(x)sinLnπtdx在工程中一般t从0开始,周期T=2L; ω = π L = 2 π T \omega=\frac{\pi }{L}=\frac{2\pi }{T} ω=Lπ=T2π

傅里叶级数的复数形式

这里需要引入欧拉公式,将时域的函数转化为负数域 e i θ = c o s θ + i s i n θ e^{i\theta }=cos\theta +isin\theta eiθ=cosθ+isinθ
带入上面的傅里叶变换的公式就可以得出DTFT的公式(算了,太长了打不出来,手写的凑活看先)在这里插入图片描述
c n = a 0 2 = a 0 = 1 T ∫ 0 T f ( t ) d t ( n = 0 ) c_{n}=\frac{a_{0}}{2}=a_{0}=\frac{1}{T }\int_{0 }^{T}f(t)dt(n=0) cn=2a0=a0=T10Tf(t)dt(n=0) c n = a n − i b n 2 = 1 T ∫ 0 T f ( t ) e − i n w t d t ( n = 1 , 2 , 3.... ) c_{n}=\frac{a_{n}-ib_{n}}{2}=\frac{1}{T }\int_{0 }^{T}f(t)e^{-inwt}dt(n=1,2,3....) cn=2anibn=T10Tf(t)einwtdt(n=1,2,3....) c n = a − n − i b − n 2 = 1 T ∫ 0 T f ( t ) e − i n w t d t ( n = − 1 , − 2 , − 3.... ) c_{n}=\frac{a_{-n}-ib_{-n}}{2}=\frac{1}{T }\int_{0 }^{T}f(t)e^{-inwt}dt(n=-1,-2,-3....) cn=2anibn=T10Tf(t)einwtdt(n=1,2,3....)若令
f ( t ) = ∑ − ∞ ∞ ∫ 0 T c n e i n w t f(t)=\sum^\infty _{-\infty}\int_{0 }^{T}c_{n}e^{inwt} f(t)=0Tcneinwt

c n = 1 T ∑ − ∞ ∞ ∫ 0 T f ( t ) e − i n w t d t c_{n}=\frac{1}{T}\sum^\infty _{-\infty}\int_{0 }^{T}f(t)e^{-inwt}dt cn=T10Tf(t)einwtdt

以上为复数域的傅里叶变换,其中 ω 0 = 2 π T \omega _{0}=\frac{2\pi }{T} ω0=T2π为基频率
c n = a + b i c_{n}=a+bi cn=a+bi则可以在复数平面内看到函数的频谱,像这样在这里插入图片描述

离散时间的傅里叶变化(DTFT)

非周期信号可以看作一个周期为无穷大的函数,可以写成 lim ⁡ T → ∞ f T ( t ) = f ( t ) \lim_{T\rightarrow \infty }f_{T}(t)= f(t) TlimfT(t)=f(t) ω = ( n + 1 ) ω 0 − n ω 0 = 2 π T \omega =(n+1)\omega _{0}-n\omega _{0}=\frac{2\pi }{T} ω=(n+1)ω0nω0=T2π也就是说,周期越大,则基频率越小,信号越趋近于连续信号。
当T趋近于无穷时 ∫ − 2 T 2 T f ( x ) d x \int_{-\frac{2 }{T} }^{\frac{2 }{T} }f(x)dx T2T2f(x)dx趋近于 ∫ − ∞ ∞ f ( x ) d x \int_{-\infty }^{\infty }f(x)dx f(x)dx
1 T = Δ ω 2 π \frac{1 }{T}=\frac{\Delta \omega }{2\pi } T1=2πΔω带入上节复数的傅里叶变换的公式就可以得到 f T ( t ) = 1 T ∑ − ∞ ∞ ∫ − 2 T 2 T f ( t ) e − i n w t d t e i n w t f_{T}(t)=\frac{1}{T}\sum^\infty _{-\infty}\int_{-\frac{2}{T} }^{\frac{2}{T}}f(t)e^{-inwt}dte^{inwt} fT(t)=T1T2T2f(t)einwtdteinwt再把上述T趋近于无穷时的值带入可已得到 f ( t ) = 1 2 π ∫ − ∞ ∞ ∫ − ∞ ∞ f ( t ) e − i n w t d t e i n w t d ω f (t)=\frac{1}{2\pi }\int_{-\infty }^{\infty}\int_{-\infty }^{\infty}f(t)e^{-inwt}dte^{inwt}d\omega f(t)=2π1f(t)einwtdteinwtdω
此时后半部分就是熟悉的傅里叶变换了,而前面半部分就是傅里叶逆变换
f ( t ) = 1 2 π ∫ − ∞ ∞ F ( ω ) e i w t d ω f (t)=\frac{1}{2\pi }\int_{-\infty }^{\infty}F(\omega )e^{iwt}d\omega f(t)=2π1F(ω)eiwtdω f ( t ) = ∫ − ∞ ∞ f ( t ) e − i w t d t f (t)=\int_{-\infty }^{\infty}f(t)e^{-iwt}dt f(t)=f(t)eiwtdt
有些有趣的事情在令 s = i ω s=i\omega s=iω时发生了,你会发现,带入后拉普拉斯变换方程就显现出来了…

(后续文章再继续介绍拉普拉斯变换)

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值