6. 机器学习基石-Why can Machine Learn? - Noice and Error

How can Machine Learn? - Noice and Error


这一节主要讨论存在噪音的情况下,上一节中讨论的VC Bound 还能否适用,我们能不能相信机器能学到东西。

1. Noise

1) Introduction of Noise

噪音数据指的是:在实际情况中,与所希望的值不一样的数据。

噪声有几种错误:
1. noise in y: mislabeled data;
2. noise in y: different labels for same x;
3. noise in x: error x.
4. …

造成噪声的原因也有很多种,比如:
1. 数据在测量时产生误差
2. 数据录入错误
3. 数据在处理过程中处理不当
4. …

2) The Influence of Noise

继续以之前抽球的例子来说明,在一个罐子中有很多小球,要么是绿色,要么是橙色,假设存在一个会不断变色的小球,颜色不停的快速变化着(即噪音),我们称之为概率性小球(Probabilitic Ball),其他的小球颜色都固定,我们称为确定性小球(Deterministic Ball)。那么确定性的小球满足公式(1)的概率,然后我们再假设这个概率性小球为+1的概率为0.7,那么满足下面公式(2)。

ρ(+1|x)=1ρ(1|x)=0(y=f(x))(yf(x))(1)

ρ(+1|x)=0.7ρ(1|x)=0.3(y=f(x))(yf(x))(2)

两个分布函数 ρ(x) ρ(y|x) ,其中 ρ(x) 越大意味着 x 被选为中的概率越大,ρ(y|x)越大意味着该样本属于某一类的概率越大,所以联合概率指的是样本点上分类尽量正确的可能性。这种含有噪音的输入样本以及标记分别服从 ρ(x) ρ(y|x) ,即 (x,y) 服从 ρ(x,y) 的联合概率分布。所以VC限制依然适用。

所以我们的流程图更新为图一所示。

Learning Flow

图一 Learning Flow [1]

2. Error

这里主要介绍 Pointwise Error Measure的方法

1) Pointwise Error Measure

我们用每个点的误差衡量来衡量整体误差,用 err() 表示。
对应 Ein(g),Eout(g) 可以用下面公式(3)和(4)表示。

Ein(g)=1Nn=1Nerr(g(xn),f(xn))(3)

Eout(g)=ϵerr(g(x),f(x))(4)

2) Two Important Pointwise Error Measures

我们用0/1错误来衡量分类问题,用平方错误来衡量回归问题。其数学表达式,如公式(5)(6)所示

err(y~,y)=[[y~y]](5)

err(y~,y)=(y~y)2(6)

3) Choice of Error Measures

对于二元分类问题错误的类型也分为两类,如图二所示。

Error Types of Binary Classification

图二 Error Types of Binary Classification [2]

在目标函数f为+1时,假设函数g却给出了-1,这种错误叫做错误的拒绝(false reject),另一种是在目标函数f为-1时,假设函数g却给出了+1,这种错误叫做错误的接受(false accept)。

然后在不同的应用场合下,如果我们要给错误加上权重,那么这个权重会不一样。比如说:

  1. 超市指纹识别的例子

如果在超市中通过指纹识别来进行打折活动,如果是vip用户,之前有指纹录入的话,就应该有优惠活动,否则没有。
如果发生false reject的情况,那么顾客可能会不高兴,这样就会损失了一部分未来的生意;而如果发生false accept的话,超市只不过损失了一点小钱。
所以对于超市的成本表如图三所示,false reject会牺牲成本比较大,而false accept牺牲的成本会较小。所以,我们应该尽量避免false reject的情形。

Finger Verification for Supermarket

图三 Finger Verification for Supermarket [3]

  1. CIA指纹识别的例子

如果美国中情局,用指纹识别来判断该人是否有权限进入系统查看重要资料。
那么,发生false accept的情况会导致很严重的后果,而false reject的话,就不会有太大的影响。
所以对于CIA的成本表如图四所示,应该尽量避免false accept的情形。

Finger Verification for CIA

图四 Finger Verification for CIA [3]

Summary

  1. 首先介绍了Noise,并且讨论了Noise对我们的VC Bound不会产生影响,即Noise不影响机器学习的可行性。
  2. 然后介绍了Error,然后讨论了0/1错误来衡量二元分类问题,以及用平方错误来衡量回归问题。
  3. 最后讨论了不同应用场景下的Error应该加上不同的权重,比如超市和CIA的指纹识别系统的侧重点不同。

Reference

[1]机器学习基石(台湾大学-林轩田)\8\8 - 1 - Noise and Probabilistic Target (17-01)

[2]机器学习基石(台湾大学-林轩田)\8\8 - 2 - Error Measure (15-10)

[3]机器学习基石(台湾大学-林轩田)\8\8 - 3 - Algorithmic Error Measure (13-46)

function [num,Period, Frequency, Density, CL95]=spectrum(x,mLAG) %%% function for power spectral analysis % usage: [num,Period, Frequency, density, cl95]=spectrum(x,mLAG) % Gong Daoyi 2003.12 xLEN=length(x); SER=x;N=xLEN;mLAGWK=mLAG;mLEN=N;J=mLAG;J1=J+1; %c calculating auto-connection coefficient A=0.0; C=0.; for I=1:N A=A+SER(I);end % I A=A/N; for I=1:N SER(I)=SER(I)-A; C=C+SER(I).^2; end % I C=C/N; for L=1:J CC(L)=0.0; for I=1:N-L CC(L)=CC(L)+SER(I)*SER(I+L); end %I CC(L)=CC(L)./(N-L); CC(L)=CC(L)/C; end %L C=1.0; %c estimating rude power spectra SPE(1)=0.0; for L=1:J-1 SPE(1)=SPE(1)+CC(L); end %L SPE(1)=SPE(1)./J+(C+CC(J))./(2*J); for L=1:J-1 % DO 210 L=1,J-1 SPE(L+1)=0.; for I=1:J-1 SPE(L+1)=SPE(L+1)+CC(I)*cos(pi*L*I/J); end % I SPE(L+1)=2*SPE(L+1)./J+C./J+(-1).^L*CC(J)./J; end % 210 L SPE(J1)=0.0; for I=1:J-1 SPE(J1)=SPE(J1)+(-1).^I*CC(J); end %I SPE(J1)=SPE(J1)/J+(C+(-1).^J*CC(J))/(2*J); %c smoothing power spectra PS(1)=.54*SPE(1)+.46*SPE(2); for L=2:J PS(L)=.23*SPE(L-1)+.54*SPE(L)+.23*SPE(L+1); end %L PS(J1)=.46*SPE(J)+.54*SPE(J1); %c statistical significence of PS W=0.0; for L=1:J-1 W=W+SPE(L+1); end %L W=W/J+(SPE(1)+SPE(J1))/(2*J); if (J > fix(N/2)) W=2.57*W; end if(J == fix(N/2)) W=2.49*W; end if(J < fix(N/2) & J > fix(N/3)) W=2.323*W; end if (J == fix(N/3)) W=2.157*W; end if (J < fix(N/3)) W=1.979*W; end %c the red noice examination for L=1:J1 SK(L)=W*(1-CC(1).^2)/(1+CC(1).^2-2*CC(1)*cos(3.14159*(L-1)/J)); end % L if (CC(1) > 0 & CC(1) >= CC(2) ) %c the white noice examination else for L=1:J1 SK(L)=W; end %L end % if %c calculating the length of cycle T(1)=NaN; for L=2:J1 T(L)=(2.0*J)/(L*1.0-1.0); end % L num=1:J+1;num=num(:)-1; Period=T(:); Frequency=1./T(:); Density=PS(:); CL95=SK(:);
06-01
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值