小样本元学习论文阅读 | Few-shot Learning with Noisy Labels, Facebook, CVPR2022

目录

1. motivation

2. contribution

3. Static alternatives to the mean

1) 空间中值原型

2) 相似度加权原型

4. Learning a prototype aggregator

1) TraNFS

2) 训练/优化流程

5. 实验部分

6. 总结


1. motivation

在对新类进行训练时,FSL方法通常假定支持集是干净的,也就是样本标记是准确的。但这种假设通常是不现实的,虽然这里支持集很小但是仍然可能包含错误标记的样本。因此,标记噪声的鲁棒性对于 FSL 方法的实用性至关重要,这个问题在很大程度上仍未得到探索。

2. contribution

  • 为了提升protonet在存在标签噪声时的鲁棒性,提出用中值和相似度加权的方式替代原来均值计算原型的方式;
  • 针对noisy few-shot learning问题,提出一个新的transformer架构——TraNFS,用于聚合支持集样本特征得到类的原型,另一方面判断样本标签是否正确;
  • 实验效果不错。

3. Static alternatives to the mean

1) 空间中值原型

存在噪声的情况下,很容易想到用中值作为均值的替代方案,但是对于向量给出中位数这种顺序统计量却不简单。找到中位数的思路是:各种分布统计数据(例如均值、中位数、众数)与适当损失函数的最小化之间存在联系。如经验平均值使其和集合中所有值之间的总平方误差最小化。

类似地,经验中位数使中位数和集合中所有值之间的总绝对误差最小化,因此找到一个中位数就等于最小化总绝对误差

故定义一个与所有嵌入向量h_i^{(c)}距离之和的损失函数,通过最小化这个损失即可以找到中值。为了使该损失函数在所有的点上都可微,给出下面平滑的pseudo-Huber loss:

该最小化问题没有封闭解/解析解,因此使用牛顿迭代法计算:

其中,

 

         

通过忽略二阶梯度和Hessian矩阵中非对角线元素,可以得到一个近似解迭代公式:

2) 相似度加权原型

不同相似度计算方式:

  • Squared Euclidean distance

  • Absolute distance

  • Cosine similarity

根据上述计算的相似度加权聚合特征即可以得到每个类的原型:

4. Learning a prototype aggregator

1) TraNFS

TraNFS用于输入支持集样本特征h,基于自注意力聚合样本信息,输出每个类的原型p:

Class token:受到Bert的启发,将[CLS(1), CLS(2),CLS(3)]与支持集特征h拼接,最后输出的是对应类的原型;Positional Encoding:位置编码主要用于指示当前样本的类别信息,是否被正确标记。

2) 训练/优化流程

  • 分类损失

  • 干净的原型的损失

根据标签正确样本计算干净原型,最小化干净原型和所有样本计算得到的原型之间的距离:

  • 二元离群值分类损失(milabeled or not)

判断每个样本的标签是否正确,这个可以看作是一个二元分类问题,基于下述损失优化:

最后训练总的损失就包含上面三个部分:

 

5. 实验部分

6. 总结

这篇文章提出了一个小的问题场景,即样本中存在标记错误的情况。但本质上,还是针对原型网络的改进,怎么获得更准确地原型,另一方面是相似度的计算也尝试了不同的距离函数。在获得原型时,提出了相应的transformer架构聚合样本特征信息,这一点也是可以借鉴的。给我的启发是,计算原型时,可以根据分类的概率,加权样本特征得到原型,因为少数样本的平均特征不能作为分布的整体性质。(好久没写博客啦,会好好加油的呜呜呜)

  • 2
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
学习邻居一致性是一种用于处理噪声标签的方法。在现实中,数据集中的标签常常会受到一些错误或噪声的影响,这会对模型的训练和泛化能力造成不利影响。而学习邻居一致性则通过考虑样本的邻居关系来进一步提高模型的鲁棒性。 学习邻居一致性方法的核心思想是基于数据的局部性原理,即相似的样本倾向于具有相似的标签。该方法通过比较样本的标签,检测和修复噪声标签,并将不确定性信息引入模型训练过程中。 具体而言,学习邻居一致性方法会首先构建一个样本的邻居图,其中每个样本的邻居是根据特征相似性确定的。然后,该方法会使用邻居信息来计算每个样本的标签一致性得分。通过比较样本自身的标签和邻居的标签,可以有效地检测和纠正噪声标签。 在模型的训练过程中,学习邻居一致性方法会引入一个邻居一致性损失函数,用于最大化样本与其邻居的标签一致性得分。这样,模型会倾向于对邻居们的标签一致性进行学习,从而提高模型的鲁棒性和泛化能力。 总而言之,学习邻居一致性方法通过考虑样本的邻居关系来处理噪声标签。它通过检测和修正噪声标签,引入不确定性信息,并最大化标签一致性得分来提高模型的鲁棒性。这种方法在处理噪声标签方面具有一定的优势,并可在实际应用中取得良好的效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值