【RT-DETR有效改进】带你分析如何确定改进的基础模型,解决模型无法收敛精度很差的问题(ResNet官方一比一复现)

本文详细介绍了如何解决RT-DETR模型在训练时出现的不收敛问题,以及如何选择合适的Baseline进行模型改进。作者提供了一比一复现RT-DETR官方实验环境的方法,特别推荐使用ResNet18作为基础模型,并分享了自己成功改进后的训练结果。文章还讨论了RT-DETR的轻量化和提高mAP精度两个研究方向,并预告了后续的博客内容将涵盖更多实验对比和改进机制。

一、本文介绍

Hello,各位读者,距离第一天发RT-DETR的博客已经过去了接近两个月,这段时间里我深入的研究了一下RT-DETR在ultralytics仓库的使用,旨在为大家解决为什么用v8的仓库训练的时候模型不收敛,精度差的离谱的问题,我也是成功的找到了解决方案,对于ultralytics仓库进行多处改进从而让其还原RT-DETR官方的实验环境从而达到一比一的效果。

其次我也将RT-DER的官方版本ResNet18、ResNet34、ResNet50、ResNet101集成在ultralytics仓库(不同于现在仓库里更新的R50和R101我是根据RT-DETR官方的代码一比一移植过来的参数量基本保持一致,网上发的都是ResNet的本身,但这和RT-DETR官方实验的版本其实是有很大的出入的)所以从今天开始正式开始更新RT-DETR的改进了,下面来教大家选取自己的baseline也就是你改进的基础模型,后面会说到如何解决模型为何不收敛的问题,以及我用我复现模型训练的结果。 

本专栏旨在打造全网最好的RT-DETR专栏!

目录

一、本文介绍

二、RT-DETR发表论文的方向 

三、Baseline的选择 

四、模型无法收敛的问题 

评论 14
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Snu77

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值