信息熵与压缩编码基础

本文介绍了信息熵的概念,它是香农在1948年提出用于量化信息不确定度的度量。通过信息熵,可以计算出信息的冗余度。文章举例说明了两种压缩编码方法——香农-范诺编码和霍夫曼编码,以及如何计算它们的压缩比率。对于给定的一串符号,两种编码方法的压缩比均为1.45:1。同时,文章还探讨了BMP图像字节计算,涉及内存占用和非压缩BMP文件的大小计算。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

什么是信息熵?

信息是个很抽象的概念。人们常常说信息很多,或者信息较少来,但却很难说清楚信息到底有多少。比如一本五十万字的中文书到底有多少信息量。
直到1948年,香农提出了“信息熵”的概源念,才解决了对信息的量化度量问题。信息熵这个词是C.E.香农从热力学中借用过来的。热力学中的热熵是表示分子状态混乱程百度的物理量。香农用信息熵的概念来描述信源的不确定度。
信息论之父克劳德·艾尔伍德·香农第一次用数度学语言阐明了概率与信息冗余度的关系。
信息论之父 C. E. Shannon 在 1948 年发表的论文“通信的数学理论( A Mathematical Theory of Communication )”中, Shannon 指出问,任何信息都存在冗余,冗余大小与信息中每个符号(数字、字母或单词)的出现概率或者说不确定性有关。
Shannon 借鉴了热力学的概念,把信息中排除了冗余后的平均信息量称为“信息熵”,并给出了计算信息熵的数学表达式答。

两种编码压缩

一串消息包含A,B,C,D,E共5类符号,其内AABBBBAAAACCCCCCCCCEEEEEEDDDDEEEEEEEEEEEEE, 请问其信息熵是多少?如果分别采用香农-范诺编码,霍夫曼编码,压缩率分别是多少?
答案详解:
在这里插入图片描述
信息熵:

由于计算机内采用二进制编码 0 和 1,所以对数底数取 2。
在这里插入图片描述
香农-范诺编码:

首先将所有的字母按照出现的次数由多到少、从左到右进行排序,如下图所示:
在这里插入图片描述
然后划分两边,使两边出现次数的差尽可能小,如下图所示:
在这里插入图片描述
编码完成如下图所示(需要的位数 = 编码位数 × 出现的次数):
在这里插入图片描述
编码前:5 种符号至少需要 3 位二进制编码,共 42 个字符,则需 3 × 42 = 126 3×42=126 3×42=126 位。
编码后:共 87 87 87 位。
压缩比: 126 : 87 = 1.45 : 1 126:87=1.45:1 126:87=1.45:1
霍夫曼编码:

首先所有字母按照从左到右、出现概率从小到打的顺序排列出来,如下图所示:
在这里插入图片描述
然后从最小概率的两个符号开始,可选其中一个支路为 0,另一支路为 1,再合并两个支路,并重新排队,多次重复这一过程,直到最后概率为 1,如下图所示
在这里插入图片描述
编码完成如下图所示(需要的位数 = 编码位数 × 出现的次数):
在这里插入图片描述
编码前:5 种符号至少需要 3 位二进制编码,共 42 个字符,则需 3 × 42 = 126 3×42=126 3×42=126 位。
编码后:共 87 87 87 位。
压缩比: 126 : 87 = 1.45 : 1 126:87=1.45:1 126:87=1.45:1
结:这道题比较特殊,两种编码方法最后得到的压缩比都一样,但能清晰地了解编码过程即可。

BMP 图像字节计算

问题描述:

一幅 1024×768 的 24 位 RGB 彩色图像一共在内存中占有多少字节? 如果将其保存为非压缩格式的 BMP 文件,文件有多少字节?
在这里插入图片描述
答案详解:
在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值