【pytorch安装】离线安装pytorch(以cpu版本安装为例)

本文提供CUDA10.2对应的PyTorch1.7.1和torchvision0.8.2的离线安装教程,包括详细步骤和测试方法,适用于深度学习GPU加速环境搭建。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

新版本请看:CUDA10.2对应的pytorch1.7.1+torchvision0.8.2安装 + cudnn安装(深度学习GPU加速)
https://blog.csdn.net/java_pythons/article/details/114782621

此文开始:
首先下载离线安装包:https://download.pytorch.org/whl/torch_stable.html
选择你要下载的版本(由于没有N卡,我以cpu版本为例安装)
我使用的是 python3.7
本次安装pytorch 1.0.0(其他版本安装方法相同,只需修改文件名)
在这里插入图片描述
将pytorch离线文件下载在有python.exe文件夹中
在这里插入图片描述
接下用pip安装下载好的pytorch离线文件
这是指定安装路径的命令行(其中***xxx*** 是你要安装的位置):

pip install --target=xxx torch-1.0.0-cp37-cp37m-win_amd64.whl

比如我的就是:

pip install --target=D:\python\python_rujian torch-1.0.0-cp37-cp37m-win_amd64.whl

在cmd中进入安装的文件夹,输入上述命令,等待一会
在这里插入图片描述
测试

在命令行中输入python,然后enter,进入python环境,import torch,如果没有报错,说明安装成功。Ctrl + D 退出python环境,回到命令行。
在这里插入图片描述

### 如何在离线环境下安装 CPU 版本PyTorch 要在离线环境下安装 CPU 版本PyTorch,可以按照以下方法操作: #### 方法一:手动下载并安装 `.whl` 文件 1. **访问官方资源库** 访问 PyTorch 官方网站或其镜像站点,找到适合当前系统的 CPU 版本的 `.whl` 文件链接。如,对于 Python 3.9 和 Windows 系统,可以选择如下 URL 下载对应版本的文件[^4]: ``` https://download.pytorch.org/whl/cpu/torch-<version>-cp39-cp39-win_amd64.whl ``` 2. **下载所需依赖项** 不仅需要下载 `torch` 的 `.whl` 文件,还需要下载其他相关组件(如 `torchvision` 和 `torchaudio`)。这些文件可以从相同的资源库中获取。 3. **复制至目标环境** 将下载好的 `.whl` 文件拷贝到目标机器上的指定路径。 4. **执行本地安装命令** 使用 `pip` 命令从本地路径安装已下载的文件: ```bash pip install /path/to/file/torch-<version>.whl pip install /path/to/file/torchvision-<version>.whl pip install /path/to/file/torchaudio-<version>.whl ``` #### 方法二:通过 Conda 手动管理包 如果使用的是 Anaconda 或 Miniconda,则可以通过以下方式实现离线安装: 1. **创建虚拟环境** 在有网络连接的设备上先创建一个新的虚拟环境,并激活该环境。 ```bash conda create -n myenv python=3.9 conda activate myenv ``` 2. **导出环境配置文件** 导出当前环境中的所有包及其具体版本号为 YAML 文件。 ```bash conda list --explicit > spec-file.txt ``` 3. **传输文件至无网环境** 将生成的 `spec-file.txt` 转移到目标机器。 4. **基于规格文件重建环境** 在目标机器上运行以下命令来重新构建相同环境: ```bash conda create --name newenv --file spec-file.txt ``` 注意,此过程可能仍需提前准备好某些基础工具包(比如 NumPy),因此建议预先打包好完整的 tar.gz 格式的压缩包以便后续导入[^3]。 --- ### 注意事项 - 如果遇到错误提示类似于“Failed to load image Python extension”,可能是由于 PyTorch 和 torchvision 的版本不兼容引起的问题,应确保两者的版本严格匹配[^1]。 - 对于特定硬件平台下的最佳实践而言,当参照显卡支持情况时推荐优先选用偶数编号系列 CUDA 驱动程序版本如 CUDA 11.8),因为它们通常具备更广泛的适应性和稳定性表现。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值