【OpenCv 4 Python 3.7】对象测量(面积,周长,质心,边界框等)

39 篇文章 9 订阅
30 篇文章 5 订阅

opencv 对象测量

1、 opencv 中轮廓特征包括:
如面积,周长,质心,边界框等
*弧长与面积测量
*多边形拟合
*获取轮廓的多边形拟合结果

2、python-opencv API提供方法:

cv2.moments() 用来计算图像中的中心矩(最高到三阶),

cv2.HuMoments() 用于由中心矩计算Hu矩,同时配合函数cv2.contourArea()函数计算轮廓面积,和cv2.arcLength()来计算轮廓或曲线长度

*cv.approxPolyDP(多边形逼近)
-contour
-epsilon 越小越折 线越逼近真实形状
-close 是否为闭合区域

函数cv2.boundingRect返回四个参数(x,y)为矩形左上角的坐标,(w,h)是矩形的宽和高。 函数cv2.rectangle是绘制矩形函数

函数cv2.minAreaRect返回的是一个 Box2D 结构,
其中包含 :矩形左上角角点的坐标(x,y),矩形的宽和高(w,h),以及旋转角度。
但是要绘制这个矩形需要矩形的 4 个角点,可以通过函数 cv2.boxPoints() 获得,最后绘制得到旋转边界矩形。

函数cv2.minEnclosingCircle可以帮我们找到一个对象的外切圆。它是所有能够完全包括对象的圆中面积最小的一个。

函数cv2.fitEllipse返回值其实就是旋转边界矩形的内切圆

3、几何矩计算
一幅M×N的数字图像ƒ(i,j),其p+q阶 几何矩mpq 和 中心矩 μpq为:
在这里插入图片描述

其中
p+q = 0 为0阶矩
p+q = 1 为1阶矩
p+q = 2 为2阶矩

其中ƒ(i,j)为图像在坐标点(i,j)处的灰度值

代码实现:

import cv2 as cv
import numpy as np

#对象测量
def measure_object(image):
    #灰度图像
    gray = cv.cvtColor(image, cv.COLOR_BGR2GRAY)
    #二值化
    ret, binary = cv.threshold(gray, 0, 255, cv.THRESH_BINARY | cv.THRESH_OTSU)
    print("threshold value : %s"%ret)
    cv.imshow("binary image", binary)
    dst = cv.cvtColor(binary, cv.COLOR_GRAY2BGR)
    #轮廓检测
    contours, hireachy = cv.findContours(binary, cv.RETR_EXTERNAL, cv.CHAIN_APPROX_SIMPLE)
    for i, contour in enumerate(contours):
        #求取轮廓的面积
        area = cv.contourArea(contour)
        #得到轮廓的外接矩形
        x, y, w, h = cv.boundingRect(contour)
        #求出宽高比
        rate = min(w, h)/max(w, h)
        print("rectangle rate : %s"%rate)
        #求取几何矩
        mm = cv.moments(contour)
        print(type(mm)) #mm:字典类型
        #得到中心位置
        cx = mm['m10']/mm['m00']
        cy = mm['m01']/mm['m00']
        #绘制圆
        cv.circle(dst, (np.int(cx), np.int(cy)), 3, (0, 255, 255), -1)
        #对每个轮廓绘制外接矩形
        #cv.rectangle(dst, (x, y), (x+w, y+h), (0, 0, 255), 2)
        print("contour area %s"%area)
        #多边形逼近,  True:表示闭合
        approxCurve = cv.approxPolyDP(contour,4, True)
        print(approxCurve.shape)
        if approxCurve.shape[0] > 6:
            #画在二值化图像上
            cv.drawContours(dst, contours, i, (0, 255, 0), 2)
        if approxCurve.shape[0] == 4:
            cv.drawContours(dst, contours, i, (0, 0, 255), 2)
        if approxCurve.shape[0] == 3:
            cv.drawContours(dst, contours, i, (255, 0, 0), 2)
        if approxCurve.shape[0] == 6:
            cv.drawContours(dst, contours, i, (100, 0, 100), 2)    
    cv.imshow("measure-contours", dst)


print("--------- Python OpenCV Tutorial ---------")
src = cv.imread("D:/vcprojects/images/blob.png")
cv.namedWindow("input image", cv.WINDOW_AUTOSIZE)
cv.imshow("input image", src)
measure_object(src)
cv.waitKey(0)

cv.destroyAllWindows()

处理结果;

在这里插入图片描述

### 回答1: OpenCV是一个用于计算机视觉和图像处理的开源库,它提供了许多用于处理图像和视频的功能和算法。OpenCV可以与多种编程语言一起使用,包括PythonOpenCV对于Python3.7版本的支持非常好。你可以通过pip命令进行安装,安装命令如下: pip install opencv-python 这个命令会安装与Python3.7兼容的OpenCV包。安装完成后,你就可以使用OpenCV来进行图像和视频处理了。 使用OpenCV进行图像处理的示例代码如下: import cv2 image = cv2.imread('image.jpg') # 读取图像文件 gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) # 将彩色图像转换为灰度图像 cv2.imshow('Original Image', image) # 显示原始图像 cv2.imshow('Gray Image', gray_image) # 显示灰度图像 cv2.waitKey(0) # 等待按下任意键 cv2.destroyAllWindows() # 关闭所有窗口 这个示例代码读取名为“image.jpg”的图像文件,并将其转换为灰度图像。然后,它会显示原始图像和灰度图像,并等待用户按下任意键来关闭窗口。 除了图像处理,OpenCV还提供了许多其他功能,如人脸检测、目标跟踪和图像合成等。你可以在OpenCV的官方文档中找到更多关于使用OpenCV进行图像处理和计算机视觉的信息。因此,Python3.7用户可以很方便地使用OpenCV进行各种图像处理任务。 ### 回答2: OpenCV是一个开源的计算机视觉库,它提供了许多用于图像处理和计算机视觉任务的函数和工具。Opencv适用于多个编程语言,包括Python。对于Python 3.7版本,可以通过pip工具直接安装和使用Opencv。 要安装Opencv库,可以在命令行中运行以下命令: ``` pip install opencv-python ``` 这将自动下载并安装最新版本的Opencv库。 一旦Opencv安装完成,就可以在Python脚本中使用它。首先,需要导入Opencv模块: ``` import cv2 ``` 然后,就可以使用Opencv提供的函数和工具进行图像处理和计算机视觉任务了。例如,可以使用Opencv读取和显示图像: ``` img = cv2.imread('image.jpg') cv2.imshow('image', img) cv2.waitKey(0) ``` 这段代码将打开名为'image.jpg'的图像文件,并在窗口中显示图像。 Opencv还提供了各种功能,如图像处理、特征提取、目标检测等。可以在Python脚本中调用这些功能,以满足不同的计算机视觉需。 总之,Opencv对应Python 3.7版本是通过pip安装和使用的,它提供了丰富的图像处理和计算机视觉功能,可以满足各种任务的需。 ### 回答3: 是的,OpenCV官方支持Python 3.7版本。OpenCV是一个开源的计算机视觉库,具有简单易用和广泛应用的特点。它为Python提供了一个优秀的界面,可以在Python中调用OpenCV的功能进行图像处理和计算机视觉任务。 使用Python 3.7OpenCV,可以进行各种图像处理操作,例如图像的读取、显示、保存、裁剪、旋转、缩放和滤波等。同时,OpenCV还提供了各种计算机视觉的功能,例如目标检测、人脸识别、图像分割、特征提取和图像匹配等。 为了在Python 3.7中使用OpenCV,首先需要安装OpenCV库。可以通过使用pip命令来安装最新版本的OpenCV,例如执行以下命令:pip install opencv-python。 安装完成后,就可以在Python 3.7的环境中导入OpenCV库,并且使用其中的各种函数和类来进行图像处理和计算机视觉任务。 总之,OpenCV完全支持Python 3.7版本,并且可以通过安装OpenCV库来在Python 3.7中使用OpenCV的各种功能。
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值