1.不定积分
常见不定积分公式
1.不定积分2大类题型:
1.不定积分计算
2.不定积分杂例
若
f
f
f在区间
I
I
I上连续,则
f
f
f在区间
I
I
I上一定有原函数。
若
f
f
f在区间
I
I
I上有第一类间断点,则
f
f
f在
I
I
I上没有原函数。
2.不定积分性质:
3.不定积分计算方法:
1.第一类换元
2.第二类换元(三角代换)
3.分部积分法
无法进行积分的积分:
∫
e
−
x
2
d
x
\int e^{-x^2} dx
∫e−x2dx、
∫
sin
x
x
d
x
\int \frac{\sin x}{x} dx
∫xsinxdx、
∫
cos
x
x
d
x
\int \frac{\cos x}{x} dx
∫xcosxdx
tan
2
x
=
2
tan
x
1
−
(
tan
2
x
)
\tan 2x=\frac{2\tan x}{1-(\tan^2 x)}
tan2x=1−(tan2x)2tanx
题型:已知 F ( x ) , f ( x ) F(x),f(x) F(x),f(x),求 f ( x ) f(x) f(x)
2.定积分
1.定积分4大类题型:
1.定积分的概念、性质及几何意义
2.定积分计算
3.变上限定积分函数及其应用
4.积分不等式
2.定积分概念、几何意义
3.定积分的存在性
4.定积分的计算
5.变上限积分函数及应用
6.定积分的性质
中值定理应用1
中值定理应用2
中值定理应用3(求极限)
定积分计算
原函数不好找到时:
区间不动,令 t = a + b − x t=a+b-x t=a+b−x
变上限积分函数及其应用
概念题1
概念题2
概念题3
变上限积分求极限解法:
1.传统方法(洛必达)
2.等价代换
3.积分中值定理
例题
反函数:
g
(
f
(
x
)
)
=
x
g(f(x))=x
g(f(x))=x
反函数相关积分例题
3.反常积分
常用反常积分的判别敛散性公式:
应用实例:
∫
0
1
x
l
n
P
x
d
x
{
P
>
0
收
敛
}
\int_{0}^{1} xln^Pxdx \begin{Bmatrix}P>0 收敛 \\ \end{Bmatrix}
∫01xlnPxdx{P>0收敛}
∫
0
1
l
n
P
x
d
x
{
P
>
0
收
敛
}
\int_{0}^{1} ln^Pxdx \begin{Bmatrix}P>0 收敛 \\ \end{Bmatrix}
∫01lnPxdx{P>0收敛}
比较判别法
小的发散,大的一定发散。
大的收敛,小的一定收敛。
P级数/P积分(无限区间):
∫
a
+
∞
1
x
P
d
x
(
a
>
0
)
{
P
>
1
收
敛
P
≤
1
发
散
}
\int_{a}^{+\infty } \frac{1}{x^P}dx(a>0)\begin{Bmatrix}P>1 收敛 \\P\le 1 发散 \end{Bmatrix}
∫a+∞xP1dx(a>0){P>1收敛P≤1发散}
瑕点在区间中间,分成左右两段,左右极限都存在,才收敛。
q积分(有限区间):
∫
a
b
1
x
P
d
x
{
P
<
1
收
敛
P
≥
1
发
散
}
\int_{a}^{b } \frac{1}{x^P}dx\begin{Bmatrix}P<1 收敛 \\P\ge 1 发散 \end{Bmatrix}
∫abxP1dx{P<1收敛P≥1发散}
无限区间P比1越大越收敛,有限区间P比1越小越收敛。