你好,p-积分

 

目录

一、p-积分的引入

二、p-积分的敛散性


一、p-积分的引入

为了引入p-积分,首先我们来介绍一下比较判别法:

 比较判别法:设在 [a,+\infty ) 上恒有0\leqslant f \left (x \right ) \leqslant K\varphi \left ( x \right ), 其中K是正常数,则

(1)当 \int_{a}^{+\infty }\varphi \left ( x\right )dx 收敛时\int_{a}^{+\infty }f\left ( x\right )dx 也收敛;

(2)当 \int_{a}^{+\infty }\varphi \left ( x\right )dx 发散时\int_{a}^{+\infty }f\left ( x\right )dx 也发散.

使用比较判别法,需要有一个敛散性结论明确,同时又形式简单的函数作为比较对象,而\frac{1}{x^{p}}正好能满足这两个条件,这正是 \int_{1}^{+\infty }\frac{1}{x^{p}}dx 与 \int_{0}^{1 }\frac{1}{x^{p}}dx 之所以重要的原因。

我们将\int_{1}^{+\infty }\frac{1}{x^{p}}dx\int_{0}^{1 }\frac{1}{x^{p}}dx称为p-积分


二、p-积分的敛散性

 1.讨论\int_{1}^{+\infty }\frac{1}{x^{p}}dx的敛散性(p\in R).

解 :当p\neq 1 时,

                            \int_{1}^{+\infty }\frac{1}{x^{p}}dx=\lim_{A\to+\infty }\frac{x^{-p+1}}{1-p} \mid ^{A}_{1}=\lim_{A\to+\infty }\frac{A^{1-p}-1}{1-p}=\frac{1}{p-1},p>1

                            \int_{1}^{+\infty }\frac{1}{x^{p}}dx=\lim_{A\to+\infty }\frac{x^{-p+1}}{1-p} \mid ^{A}_{1}=\lim_{A\to+\infty }\frac{A^{1-p}-1}{1-p}=+\infty ,p<1

         当p=1时,\int_{1}^{+\infty }\frac{1}{x}dx=\lim_{A\to+\infty }\ln x \mid ^{A}_{1}=\lim_{A\to+\infty }\ln A=+\infty.

         因此,当p>1时,反常积分\int_{1}^{+\infty }\frac{1}{x^{p}}dx收敛于\frac{1}{p-1};当p\leqslant 1时,反常积分\int_{1}^{+\infty }\frac{1}{x^{p}}dx发散.

 2.讨论\int_{0}^{1 }\frac{1}{x^{p}}dx的敛散性(p\in R).

 解 :当p\neq 1 时,

                         \int_{0}^{1 }\frac{1}{x^{p}}dx   =\lim_{\eta \to 0^{+}}\frac{x^{-p+1}}{1-p}\mid ^{1}_{\eta }=\lim_{\eta \to 0^{+}}\frac{1-\eta ^{1-p}}{1-p}=+\infty ,p>1

                        \int_{0}^{1 }\frac{1}{x^{p}}dx   =\lim_{\eta \to 0^{+}}\frac{x^{-p+1}}{1-p}\mid ^{1}_{\eta }=\lim_{\eta \to 0^{+}}\frac{1-\eta ^{1-p}}{1-p}= \frac{1}{1-p},p<1.

           当p=1时,

                        \int_{0}^{1 }\frac{1}{x^{p}}dx=\lim_{\eta \to 0^{+}}\ln x\mid ^{1}_{\eta }=-\lim_{\eta \to 0^{+}}\ln \eta=+\infty .

           因此,当p<1时,反常积分\int_{0}^{1 }\frac{1}{x^{p}}dx收敛于\frac{1}{1-p};当p\geqslant 1时,反常积分                          \int_{0}^{1 }\frac{1}{x^{p}}dx  发散.

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Runge芝

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值