拉格朗日方程的三种推导方法之基于汉密顿原理推导

拉格朗日方程是分析力学中的重要方程,其地位相当于牛顿第二定律之于牛顿力学。

哈密顿原理可数学表述为:
δ ∫ t 1 t 2 L d t = 0 (1) \delta \int_{{{t}_{1}}}^{{{t}_{2}}}{Ldt=0}\tag{1} δt1t2Ldt=0(1)
在等时变分情况下,有:
δ q ∙   = d d t ( δ q ) (2) \delta \overset{\bullet }{\mathop{q}}\,=\frac{d}{dt}(\delta q)\tag{2} δq=dtd(δq)(2)
δ ∫ t 1 t 2 L d t = ∫ t 1 t 2 ( δ L ) d t = 0 (3) \delta \int_{{{t}_{1}}}^{{{t}_{2}}}{Ldt=\int_{{{t}_{1}}}^{{{t}_{2}}}{(\delta L)dt}}=0\tag{3} δt1t2Ldt=t1t2(δL)dt=0(3)
由拉格朗日量定义得,在等时变分情况下有
δ L = ∂ L ∂ q ∙   δ q ∙   + ∂ L ∂ q δ q (4) \delta L=\frac{\partial L}{\partial \overset{\bullet }{\mathop{q}}\,}\delta \overset{\bullet }{\mathop{q}}\,+\frac{\partial L}{\partial q}\delta q\tag{4} δL=qLδq+qLδq(4)
其中第一项可化为:
∂ L ∂ q ∙   δ q ∙   = ∂ L ∂ q ∙   d d t ( δ q ) = d d t ( ∂ L ∂ q ∙   ∙ δ q ) − d d t ( ∂ L ∂ q ∙   ) δ q (5) \frac{\partial L}{\partial \overset{\bullet }{\mathop{q}}\,}\delta \overset{\bullet }{\mathop{q}}\,=\frac{\partial L}{\partial \overset{\bullet }{\mathop{q}}\,}\frac{d}{dt}(\delta q)=\frac{d}{dt}(\frac{\partial L}{\partial \overset{\bullet }{\mathop{q}}\,}\bullet \delta q)-\frac{d}{dt}(\frac{\partial L}{\partial \overset{\bullet }{\mathop{q}}\,})\delta q\tag{5} qLδq=qLdtd(δq)=dtd(qLδq)dtd(qL)δq(5)
将(5)代入(4)得:
δ L = d d t ( ∂ L ∂ q ∙   ∙ δ q ) − d d t ( ∂ L ∂ q ∙   ) δ q + ∂ L ∂ q δ q (6) \delta L=\frac{d}{dt}(\frac{\partial L}{\partial \overset{\bullet }{\mathop{q}}\,}\bullet \delta q)-\frac{d}{dt}(\frac{\partial L}{\partial \overset{\bullet }{\mathop{q}}\,})\delta q+\frac{\partial L}{\partial q}\delta q\tag{6} δL=dtd(qLδq)dtd(qL)δq+qLδq(6)
将(6)代入(3)得
( ∂ L ∂ q ∙   ∙ δ q ) ∣ t 2 t 1 + ∫ t 1 t 2 ( − d d t ( ∂ L ∂ q ∙   ) δ q + ∂ L ∂ q δ q ) d t = 0 (7) (\frac{\partial L}{\partial \overset{\bullet }{\mathop{q}}\,}\bullet \delta q)\left| _{{{t}_{2}}}^{{{t}_{1}}} \right.+\int_{{{t}_{1}}}^{{{t}_{2}}}{(-\frac{d}{dt}(\frac{\partial L}{\partial \overset{\bullet }{\mathop{q}}\,})\delta q+\frac{\partial L}{\partial q}\delta q})dt=0\tag{7} (qLδq)t2t1+t1t2(dtd(qL)δq+qLδq)dt=0(7)
t 1 , t 2 {{t}_{1}},{{t}_{2}} t1,t2 δ q = 0 \delta q=0 δq=0,所以(7)变为:
∫ t 1 t 2 ( d d t ( ∂ L ∂ q ∙   ) δ q − ∂ L ∂ q δ q ) d t = 0 (8) \int_{{{t}_{1}}}^{{{t}_{2}}}{(\frac{d}{dt}(\frac{\partial L}{\partial \overset{\bullet }{\mathop{q}}\,})\delta q-\frac{\partial L}{\partial q}\delta q})dt=0\tag{8} t1t2(dtd(qL)δqqLδq)dt=0(8)

∫ t 1 t 2 [ ( − d d t ( ∂ L ∂ q ∙   ) + ∂ L ∂ q ) δ q ] d t = 0 (9) \int_{{{t}_{1}}}^{{{t}_{2}}}{[(-\frac{d}{dt}(\frac{\partial L}{\partial \overset{\bullet }{\mathop{q}}\,})+\frac{\partial L}{\partial q}})\delta q]dt=0\tag{9} t1t2[(dtd(qL)+qL)δq]dt=0(9)
q是独立变量,所以得拉格朗日方程:
d d t ( ∂ L ∂ q ˙ j ) − ∂ L ∂ q j = 0 (10) \frac{d}{dt}\left( \frac{\partial L}{\partial {{{\dot{q}}}_{j}}} \right)-\frac{\partial L}{\partial {{q}_{j}}}=0\tag{10} dtd(q˙jL)qjL=0(10)

  • 5
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值