拉格朗日方程的三种推导方法之基于达朗贝尔原理推导

拉格朗日方程是分析力学中的重要方程,其地位相当于牛顿第二定律之于牛顿力学。

达朗贝尔原理由法国物理学家与数学家让•达朗贝尔发现并以其命名。达朗贝尔原理表明:对于任意物理系统,所有惯性力或施加的外力,经过符合约束条件的虚位移,所作的虚功的总合为零。即:
δ W = ∑ i ( F i + I i ) ⋅ δ r i = 0 (1) \delta W=\sum\limits_{i}{\left( {{\mathbf{F}}_{i}}+{{\mathbf{I}}_{i}} \right)}\cdot \delta {{\mathbf{r}}_{i}}=0\tag{1} δW=i(Fi+Ii)δri=0(1)
其中 I i {{\mathbf{I}}_{i}} Ii为惯性力, I i = − m i a i {{\mathbf{I}}_{i}}=-{{m}_{i}}{{\mathbf{a}}_{i}} Ii=miai F i {{\mathbf{F}}_{i}} Fi为粒子所受外力, δ r i \delta {{\mathbf{r}}_{i}} δri为符合系统约束的虚位移。
设粒子 P i {{P}_{i}} Pi的位置 r i {{\mathbf{r}}_{i}} ri为广义坐标 q 1 , q 2 , ⋯   , q n {{q}_{1}},{{q}_{2}},\cdots ,{{q}_{n}} q1,q2,,qn与时间 t t t的函数:
r i = P i ( q 1 , q 2 , ⋯   , q n , t ) (2) {{\mathbf{r}}_{i}}={{P}_{i}}\left( {{q}_{1}},{{q}_{2}},\cdots ,{{q}_{n}},t \right)\tag{2} ri=Pi(q1,q2,,qn,t)(2)
则虚位移可以表示为:
δ r i = ∑ j ∂ r i ∂ q j δ q j (3) \delta {{\mathbf{r}}_{i}}=\sum\limits_{j}{\frac{\partial {{\mathbf{r}}_{i}}}{\partial {{q}_{j}}}}\delta {{q}_{j}}\tag{3} δri=jqjriδqj(3)
粒子的速度 v i = v i ( q 1 , q 2 , ⋯   , q n , q ˙ 1 , q ˙ 2 , ⋯   , q ˙ n , t ) {{\mathbf{v}}_{i}}={{\mathbf{v}}_{i}}\left( {{q}_{1}},{{q}_{2}},\cdots ,{{q}_{n}},{{{\dot{q}}}_{1}},{{{\dot{q}}}_{2}},\cdots ,{{{\dot{q}}}_{n}},t \right) vi=vi(q1,q2,,qn,q˙1,q˙2,,q˙n,t) 可表示为:
v i = d r i d t = ∂ r i ∂ t + ∑ j ∂ r i ∂ q j q ˙ j (4) {{\mathbf{v}}_{i}}=\frac{d{{\mathbf{r}}_{i}}}{dt}=\frac{\partial {{\mathbf{r}}_{i}}}{\partial t}+\sum\limits_{j}{\frac{\partial {{\mathbf{r}}_{i}}}{\partial {{q}_{j}}}}{{\dot{q}}_{j}}\tag{4} vi=dtdri=tri+jqjriq˙j(4)
取速度对于广义速度的偏微分:
∂ v i ∂ q ˙ j = ∂ r i ∂ q j (5) \frac{\partial {{\mathbf{v}}_{i}}}{\partial {{{\dot{q}}}_{j}}}=\frac{\partial {{\mathbf{r}}_{i}}}{\partial {{q}_{j}}}\tag{5} q˙jvi=qjri(5)
首先转化方程(1)的加速度项。将方程(3)代入:
∑ i m i a i ⋅ δ r i = ∑ i , j m i a i ⋅ ∂ r i ∂ q j δ q j (6) \sum\limits_{i}{{{m}_{i}}}{{\mathbf{a}}_{i}}\cdot \delta {{\mathbf{r}}_{i}}=\sum\limits_{i,j}{{{m}_{i}}}{{\mathbf{a}}_{i}}\cdot \frac{\partial {{\mathbf{r}}_{i}}}{\partial {{q}_{j}}}\delta {{q}_{j}}\tag{6} imiaiδri=i,jmiaiqjriδqj(6)
应用乘积法则:
∑ i , j m i a i ⋅ ∂ r i ∂ q j δ q j = ∑ i , j ( d d t ( m i v i ⋅ ∂ r i ∂ q j ) − m i v i ⋅ d d t ( ∂ r i ∂ q j ) ) δ q j (7) \sum\limits_{i,j}{{{m}_{i}}}{{\mathbf{a}}_{i}}\cdot \frac{\partial {{\mathbf{r}}_{i}}}{\partial {{q}_{j}}}\delta {{q}_{j}}=\sum\limits_{i,j}{\left( \frac{d}{dt}\left( {{m}_{i}}{{\mathbf{v}}_{i}}\cdot \frac{\partial {{\mathbf{r}}_{i}}}{\partial {{q}_{j}}} \right)-{{m}_{i}}{{\mathbf{v}}_{i}}\cdot \frac{d}{dt}\left( \frac{\partial {{\mathbf{r}}_{i}}}{\partial {{q}_{j}}} \right) \right)}\delta {{q}_{j}}\tag{7} i,jmiaiqjriδqj=i,j(dtd(miviqjri)mividtd(qjri))δqj(7)
注意到 ∂ r i ∂ q j \frac{\partial {{\mathbf{r}}_{i}}}{\partial {{q}_{j}}} qjri 的参数为 q 1 , q 2 , ⋯   , q n , t {{q}_{1}},{{q}_{2}},\cdots ,{{q}_{n}},t q1,q2,,qn,t,而速度 v i {{\mathbf{v}}_{i}} vi 的参数为 q 1 , q 2 , ⋯   , q n , q ˙ 1 , q ˙ 2 , ⋯   , q ˙ n , t {{q}_{1}},{{q}_{2}},\cdots ,{{q}_{n}},{{\dot{q}}_{1}},{{\dot{q}}_{2}},\cdots ,{{\dot{q}}_{n}},t q1,q2,,qn,q˙1,q˙2,,q˙n,t ,所以,
d d t ( ∂ r i ∂ q j ) = ( ∂ ∂ t + ∑ k q ˙ k ∂ ∂ q k ) ( ∂ r i ∂ q j ) = ∂ 2 r i ∂ q j ∂ t + ∑ k ∂ 2 r i ∂ q j ∂ q k q ˙ k (8) \frac{d}{dt}\left( \frac{\partial {{\mathbf{r}}_{i}}}{\partial {{q}_{j}}} \right)=\left( \frac{\partial }{\partial t}+\sum\limits_{k}{{{{\dot{q}}}_{k}}}\frac{\partial }{\partial {{q}_{k}}} \right)\left( \frac{\partial {{\mathbf{r}}_{i}}}{\partial {{q}_{j}}} \right)=\frac{{{\partial }^{2}}{{\mathbf{r}}_{i}}}{\partial {{q}_{j}}\partial t}+\sum\limits_{k}{\frac{{{\partial }^{2}}{{\mathbf{r}}_{i}}}{\partial {{q}_{j}}\partial {{q}_{k}}}}{{\dot{q}}_{k}}\tag{8} dtd(qjri)=(t+kq˙kqk)(qjri)=qjt2ri+kqjqk2riq˙k(8)
∂ v i ∂ q j = ∂ ∂ q j ( ∂ r i ∂ t + ∑ k ∂ r i ∂ q k q ˙ k ) = ∂ 2 r i ∂ q j ∂ t + ∑ k ∂ 2 r i ∂ q j ∂ q k q ˙ k (9) \frac{\partial {{\mathbf{v}}_{i}}}{\partial {{q}_{j}}}=\frac{\partial }{\partial {{q}_{j}}}\left( \frac{\partial {{\mathbf{r}}_{i}}}{\partial t}+\sum\limits_{k}{\frac{\partial {{\mathbf{r}}_{i}}}{\partial {{q}_{k}}}}{{{\dot{q}}}_{k}} \right)=\frac{{{\partial }^{2}}{{\mathbf{r}}_{i}}}{\partial {{q}_{j}}\partial t}+\sum\limits_{k}{\frac{{{\partial }^{2}}{{\mathbf{r}}_{i}}}{\partial {{q}_{j}}\partial {{q}_{k}}}}{{\dot{q}}_{k}}\tag{9} qjvi=qj(tri+kqkriq˙k)=qjt2ri+kqjqk2riq˙k(9)
因此,以下关系式成立:
d d t ( ∂ r i ∂ q j ) = ∂ v i ∂ q j (10) \frac{d}{dt}\left( \frac{\partial {{\mathbf{r}}_{i}}}{\partial {{q}_{j}}} \right)=\frac{\partial {{\mathbf{v}}_{i}}}{\partial {{q}_{j}}}\tag{10} dtd(qjri)=qjvi(10)
将方程(5)与(10)代入,加速度项成为:
∑ i , j m i a i ⋅ ∂ r i ∂ q j δ q j = ∑ i , j ( d d t ( m i v i ⋅ ∂ v i ∂ q ˙ j ) − m i v i ⋅ ∂ v i ∂ q j ) δ q j (11) \sum\limits_{i,j}{{{m}_{i}}}{{\mathbf{a}}_{i}}\cdot \frac{\partial {{\mathbf{r}}_{i}}}{\partial {{q}_{j}}}\delta {{q}_{j}}=\sum\limits_{i,j}{\left( \frac{d}{dt}\left( {{m}_{i}}{{\mathbf{v}}_{i}}\cdot \frac{\partial {{\mathbf{v}}_{i}}}{\partial {{{\dot{q}}}_{j}}} \right)-{{m}_{i}}{{\mathbf{v}}_{i}}\cdot \frac{\partial {{\mathbf{v}}_{i}}}{\partial {{q}_{j}}} \right)}\delta {{q}_{j}}\tag{11} i,jmiaiqjriδqj=i,j(dtd(miviq˙jvi)miviqjvi)δqj(11)
代入动能表达式:
T = ∑ i 1 2 m i v i ⋅ v i (12) T=\sum\limits_{i}{\frac{1}{2}}{{m}_{i}}{{\mathbf{v}}_{i}}\cdot {{\mathbf{v}}_{i}}\tag{12} T=i21mivivi(12)
则加速度项与动能的关系为:
∑ i , j m i a i ⋅ ∂ r i ∂ q j δ q j = ∑ j ( d d t ( ∂ T ∂ q ˙ j ) − ∂ T ∂ q j ) δ q j (13) \sum\limits_{i,j}{{{m}_{i}}}{{\mathbf{a}}_{i}}\cdot \frac{\partial {{\mathbf{r}}_{i}}}{\partial {{q}_{j}}}\delta {{q}_{j}}=\sum\limits_{j}{\left( \frac{d}{dt}\left( \frac{\partial T}{\partial {{{\dot{q}}}_{j}}} \right)-\frac{\partial T}{\partial {{q}_{j}}} \right)}\delta {{q}_{j}}\tag{13} i,jmiaiqjriδqj=j(dtd(q˙jT)qjT)δqj(13)
然后转换方程(1)的外力项代入方程(3)得:
∑ i F i ⋅ δ r i = ∑ i , j F i ⋅ ∂ r i ∂ q j δ q j = ∑ j F j δ q j (14) \sum\limits_{i}{{{\mathbf{F}}_{i}}}\cdot \delta {{\mathbf{r}}_{i}}=\sum\limits_{i,j}{{{\mathbf{F}}_{i}}}\cdot \frac{\partial {{\mathbf{r}}_{i}}}{\partial {{q}_{j}}}\delta {{q}_{j}}=\sum\limits_{j}{{{\mathcal{F}}_{j}}}\delta {{q}_{j}}\tag{14} iFiδri=i,jFiqjriδqj=jFjδqj(14)
其中 F \mathcal{F} F是广义力:
F j = ∑ i F i ⋅ ∂ r i ∂ q j (15) {{\mathcal{F}}_{j}}=\sum\limits_{i}{{{\mathbf{F}}_{i}}}\cdot \frac{\partial {{\mathbf{r}}_{i}}}{\partial {{q}_{j}}}\tag{15} Fj=iFiqjri(15)
将方程(13)与(14)代入方程(1)可得:
∑ j ( d d t ( ∂ T ∂ q ˙ j ) − ∂ T ∂ q j − F j ) δ q j = 0 (16) \sum\limits_{j}{\left( \frac{d}{dt}\left( \frac{\partial T}{\partial {{{\dot{q}}}_{j}}} \right)-\frac{\partial T}{\partial {{q}_{j}}}-{{\mathcal{F}}_{j}} \right)}\delta {{q}_{j}}=0\tag{16} j(dtd(q˙jT)qjTFj)δqj=0(16)
假设所有的广义坐标都相互独立,则所有的广义坐标的虚位移也都相互独立。由于这些虚位移都是任意设定的,只有满足下述方程,才能使方程(16)成立:
d d t ( ∂ T ∂ q ˙ j ) − ∂ T ∂ q j − F j = 0 (17) \frac{d}{dt}\left( \frac{\partial T}{\partial {{{\dot{q}}}_{j}}} \right)-\frac{\partial T}{\partial {{q}_{j}}}-{{\mathcal{F}}_{j}}=0\tag{17} dtd(q˙jT)qjTFj=0(17)
这系统的广义力与广义位势 V V V之间的关系式为:
F j = d d t ( ∂ V ∂ q ˙ j ) − ∂ V ∂ q j (18) {{\mathcal{F}}_{j}}=\frac{d}{dt}\left( \frac{\partial V}{\partial {{{\dot{q}}}_{j}}} \right)-\frac{\partial V}{\partial {{q}_{j}}}\tag{18} Fj=dtd(q˙jV)qjV(18)
代入得:
d d t ( ∂ ( T − V ) ∂ q ˙ j ) − ∂ ( T − V ) ∂ q j = 0 (19) \frac{d}{dt}\left( \frac{\partial (T-V)}{\partial {{{\dot{q}}}_{j}}} \right)-\frac{\partial (T-V)}{\partial {{q}_{j}}}=0\tag{19} dtd(q˙j(TV))qj(TV)=0(19)
定义拉格朗日量 L L L为动能与势能之差,可得拉格朗日方程:
d d t ( ∂ L ∂ q ˙ j ) − ∂ L ∂ q j = 0 (20) \frac{d}{dt}\left( \frac{\partial L}{\partial {{{\dot{q}}}_{j}}} \right)-\frac{\partial L}{\partial {{q}_{j}}}=0\tag{20} dtd(q˙jL)qjL=0(20)

  • 8
    点赞
  • 19
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值