How to use yolov3 in matlab

 I try to use yolo in matlab ,and follow the example, although the detetor of yolo was built, the accuracy is low. I used the image from website ,few picture with car could be recognized.

 

Object Detection Using YOLO v2 Deep Learning
April 8,2019
Jun zhang
matlab:2019a
download data

doTraining = false;
if ~doTraining && ~exist('yolov2ResNet50VehicleExample.mat','file')
    % Download pretrained detector.
    disp('Downloading pretrained detector (98 MB)...');
    pretrainedURL = 'https://www.mathworks.com/supportfiles/vision/data/yolov2ResNet50VehicleExample.mat';
    websave('yolov2ResNet50VehicleExample.mat',pretrainedURL);
end


load dataset
when you unzip the file, the dataset will be added to the same directory as this .m or .mlx file
% Unzip vehicle dataset images.
unzip vehicleDatasetImages.zip

% Load vehicle dataset ground truth.
data = load('vehicleDatasetGroundTruth.mat');
vehicleDataset = data.vehicleDataset;

%% The training data is stored in a table. The first column contains the path to the image files. The remaining columns contain the ROI labels for vehicles.

% Display first few rows of the data set.
vehicleDataset(1:4,:)


%% Display one of the images from the data set to understand the type of images it contains.
% Add the fullpath to the local vehicle data folder.
vehicleDataset.imageFilename = fullfile(pwd,vehicleDataset.imageFilename);

% % 

%% read the  specific file

% Read one of the images.
num=11;
I = imread(vehicleDataset.imageFilename{num});

% Insert the ROI labels.
I = insertShape(I,'Rectangle',vehicleDataset.vehicle{num});

% Resize and display image.
I = imresize(I,3);
imshow(I)


%% THIS method was used to construct the train dataset and test dataset in randomly order
%% Split the data set into a training set for training the detector, and a test set for evaluating the detector. Select 60% of the data for training. Use the rest for evaluation.% Set random seed to ensure example training reproducibility.

rng(0);

% Randomly split data into a training and test set.
shuffledIndices = randperm(height(vehicleDataset))
% p = randperm(n) returns a row vector containing a random permutation of the integers from 1 to n inclusive.


idx = floor(0.6 * length(shuffledIndices) )
VtrainingData = vehicleDataset(shuffledIndices(1:idx),:);
VtestData = vehicleDataset(shuffledIndices(idx+1:end),:);

% Create a YOLO v2 Object Detection Network
% The YOLO v2 object detection network can be thought of as having two sub-networks. A feature extraction network, followed by a detection network.

% The feature extraction network is typically a pretrained CNN (see Pretrained Deep Neural Networks for more details). This example uses ResNet-50 for feature extraction. Other pretrained networks such as MobileNet v2 or ResNet-18 can also be used depending on application requirements. The detection sub-network is a small CNN compared to the feature extraction network and is composed of a few convolutional layers and layers specific for YOLO v2.

% Use the yolov2Layers function to automatically modify a pretrained ResNet-50 network into a YOLO v2 object detection network. yolov2Layers requires you to specify several inputs that parameterize a YOLO v2 network.

% First, specify the image input size and the number of classes. The image input size should be at least as big as the images in the training image set. In this example, the images are 224-by-224 RGB images.

% Define the image input size.
imageSize = [224 224 3];

% Define the number of object classes to detect.
numClasses = width(vehicleDataset)-1; % first column is file path.

anchorBoxes = [
    43 59
    18 22
    23 29
    84 109
];

Finally, specify the network and feature extraction layer within that network to use as the basis of YOLO v2.
% Load a pretrained ResNet-50.
baseNetwork = resnet50;
% Analyze deep learning network architecture

analyzeNetwork(baseNetwork)

%% Select 'activation_40_relu' as the feature extraction layer. The layers after 'activation_40_relu' are discarded and the detection sub-network is attached to 'activation_40_relu'. This feature extraction layer outputs feature maps that are downsampled by a factor of 16. This amount of downsampling is a good trade-off between spatial resolution and the strength of the extracted features (features extracted further down the network encode stronger image features at the cost of spatial resolution). Choosing the optimal feature extraction layer requires empirical analysis and is another hyperparameter to tune.

% Specify the feature extraction layer.
featureLayer = 'activation_40_relu' %% this is the 141th layer in the basenetwork

% Create the YOLO v2 object detection network. 
% Create the YOLO v2 object detection network. 
lgraph = yolov2Layers(imageSize,numClasses,anchorBoxes,baseNetwork,featureLayer);

analyzeNetwork(lgraph)


%% Train YOLO v2 Object Detector
% To use the trainYOLOv2ObjectDetector function, set doTraining to true. Otherwise, load a pretrained detector.
doTraining=true;
if doTraining
    
    % Configure the training options. 
    %  * Lower the learning rate to 1e-3 to stabilize training. 
    %  * Set CheckpointPath to save detector checkpoints to a temporary
    %    location. If training is interrupted due to a system failure or
    %    power outage, you can resume training from the saved checkpoint.
    options = trainingOptions('sgdm', ...
        'MiniBatchSize', 16, ....
        'InitialLearnRate',1e-3, ...
        'MaxEpochs',10,...
        'CheckpointPath', tempdir, ...
        'Shuffle','every-epoch');    
    
    % Train YOLO v2 detector.
    [detector,info] = trainYOLOv2ObjectDetector(VtrainingData,lgraph,options);
else
    % Load pretrained detector for the example.
    pretrained = load('yolov2ResNet50VehicleExample.mat');
    detector = pretrained.detector;
end

Training on single CPU.
|========================================================================================|
|  Epoch  |  Iteration  |  Time Elapsed  |  Mini-batch  |  Mini-batch  |  Base Learning  |
|         |             |   (hh:mm:ss)   |     RMSE     |     Loss     |      Rate       |
|========================================================================================|
|       1 |           1 |       00:00:06 |         6.69 |         44.7 |          0.0010 |
|       5 |          50 |       00:05:39 |         2.40 |          5.7 |          0.0010 |
|      10 |         100 |       00:11:17 |         2.33 |          5.4 |          0.0010 |
|      10 |         110 |       00:12:21 |         2.12 |          4.5 |          0.0010 |
|========================================================================================|

 

 

test dataset
% Read a test image.
num=1
VtestData.imageFilename{num}
I = imread(VtestData.imageFilename{num});

% Run the detector.
[bboxes,scores] = detect(detector,I)

% Annotate detections in the image.
I = insertObjectAnnotation(I,'rectangle',bboxes,scores);
imshow(I)


%% Evaluate Detector Using Test Set

% Create a table to hold the bounding boxes, scores, and labels output by
% the detector. 
numImages = height(VtestData);
results = table('Size',[numImages 3],...
    'VariableTypes',{'cell','cell','cell'},...
    'VariableNames',{'Boxes','Scores','Labels'});

% Run detector on each image in the test set and collect results.
for i = 1:numImages
    
    % Read the image.
    I = imread(VtestData.imageFilename{i});
    
    % Run the detector.
    [bboxes,scores,labels] = detect(detector,I);
   
    % Collect the results.
    results.Boxes{i} = bboxes;
    results.Scores{i} = scores;
    results.Labels{i} = labels;
end

% Extract expected bounding box locations from test data.
expectedResults = VtestData(:, 2:end);

% Evaluate the object detector using average precision metric.
[ap, recall, precision] = evaluateDetectionPrecision(results, expectedResults);

% Plot precision/recall curve
plot(recall,precision)
xlabel('Recall')
ylabel('Precision')
grid on
title(sprintf('Average Precision = %.2f', ap))


test image from website and downloadit

filename='C:\Users\cra\Downloads\image_00063.jpg';
% Read a test image.
I = imread(filename);
%I=imresize(I,[224 224]);
imshow(I)
% Run the detector.
  [bboxes,scores,labels] = detect(detector,I);

% Annotate detections in the image.
I = insertObjectAnnotation(I,'rectangle',bboxes,scores);
imshow(I)

<think>好的,我现在需要帮助用户找到在PyCharm中安装YOLOv9的逐步指南。首先,我需要理解用户的需求。用户可能已经安装了PyCharm,现在想在其环境中安装YOLOv9。YOLOv9是一个目标检测模型,属于计算机视觉领域,通常基于深度学习框架如PyTorch或TensorFlow实现。 接下来,我应该考虑用户可能的背景。他们可能对Python环境管理不太熟悉,或者在配置开发环境时需要指导。YOLOv9的具体安装步骤可能包括克隆仓库、安装依赖库、配置环境变量等。此外,用户可能需要在PyCharm中正确设置解释器,确保依赖项正确安装。 首先,我需要确认YOLOv9的官方资源在哪里。通常,GitHub仓库是主要的来源,所以建议用户从官方或可信的仓库克隆代码。例如,假设YOLOv9的仓库在GitHub上的某个位置,用户需要克隆该仓库到本地。 然后,安装依赖项是关键步骤。YOLOv9可能依赖于特定版本的PyTorch、torchvision以及其他库,如numpy、opencv-python等。用户需要使用PyCharm的终端或通过项目解释器安装这些依赖。需要注意的是,PyCharm通常使用虚拟环境,因此需要确保依赖安装在正确环境中。 另外,用户可能需要安装其他工具,比如CUDA和cuDNN,如果他们打算使用GPU加速的话。这需要检查用户的系统是否支持,并指导他们如何安装这些依赖。不过,这部分可能超出PyCharm的范畴,属于系统级配置。 接下来,用户可能需要下载预训练权重文件,这通常需要从官方提供的链接下载,并将其放置在项目目录的指定位置。例如,YOLOv9可能提供yolov9.pt或类似的权重文件,用户需要正确放置这些文件才能运行模型。 在PyCharm中配置项目时,用户需要设置正确的Python解释器。这可能涉及在PyCharm的设置中选择已存在的虚拟环境或创建新的环境。同时,可能需要配置运行配置,指定脚本参数,如模型路径、输入数据等。 此外,用户可能会遇到依赖版本冲突的问题。例如,某些库可能需要特定版本才能兼容YOLOv9。这时候,建议用户按照官方文档中的requirements.txt文件安装指定版本的库,以避免兼容性问题。 测试安装是否成功也是一个重要步骤。用户可能需要运行一个示例脚本,比如检测图像或视频的脚本,来验证YOLOv9是否正确安装。如果出现错误,需要检查错误信息,通常是缺少库或版本不匹配导致的。 最后,用户可能需要进一步的帮助,比如如何在实际项目中使用YOLOv9,或者如何训练自定义数据集。因此,在回答中应该包含相关问题,引导用户继续深入学习。 总结来说,步骤大致为:克隆仓库、安装依赖、配置环境、下载权重、测试运行。需要详细说明每个步骤的具体操作,并提醒用户注意常见问题,如环境配置和依赖版本。同时,引用相关的参考资料,如PyCharm安装指南和官方文档,确保信息的可靠性。</think>### 如何在PyCharm中安装YOLOv9 #### 步骤1:创建PyCharm项目 1. 打开PyCharm,选择**File > New Project** 2. 设置项目路径和Python解释器(推荐使用虚拟环境)[^4] 3. 点击**Create**完成项目初始化 #### 步骤2:克隆YOLOv9仓库 1. 在PyCharm终端执行以下命令: ```bash git clone https://github.com/WongKinYiu/yolov9.git ``` (假设官方仓库地址为此,需根据实际更新) #### 步骤3:安装依赖库 1. 进入项目目录: ```bash cd yolov9 ``` 2. 安装依赖(参考仓库的`requirements.txt`): ```bash pip install -r requirements.txt ``` 关键依赖包括: - `torch>=1.7.0` - `opencv-python` - `numpy` #### 步骤4:下载预训练权重 1. 从YOLOv9官方页面下载权重文件(如`yolov9.pt`) 2. 将权重文件保存到项目目录的`weights`文件夹中 #### 步骤5:验证安装 1. 创建测试脚本`test.py`: ```python from models.yolo import Model model = Model("cfg/yolov9.yaml") print("YOLOv9模型加载成功!") ``` 2. 运行脚本,确认无报错 #### 常见问题解决 - **CUDA支持**:若需GPU加速,安装对应版本的`torch`和`torchvision`[^2] - **依赖冲突**:使用`pip freeze`检查版本,按需调整至requirements指定版本 ---
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

做一个码农都是奢望

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值