线性代数:矩阵运算常用公式
码着方便自己查。
知乎版本
1 转置 (Transpose)
( A + B ) T = A T + B T ( A B ) T = B T A T (\mathbf A + \mathbf B)^T = \mathbf A^T + \mathbf B^T \\ (\mathbf A \mathbf B)^T = \mathbf B^T \mathbf A^T (A+B)T=AT+BT(AB)T=BTAT
2 逆 (Inverse)
( A B ) − 1 = B − 1 A − 1 ( A T ) − 1 = ( A − 1 ) T (\mathbf A \mathbf B)^{-1} = \mathbf B^{-1} \mathbf A^{-1} \\ (\mathbf A^T)^{-1} = (\mathbf A^{-1})^T (AB)−1=B−1A−1(AT)−1=(A−1)T
注:一般矩阵为方阵且可逆时,才能做逆运算。
3 行列式 (Determinant)
A
\mathbf A
A为
n
n
n行
n
n
n列的方阵。
d
e
t
(
A
)
=
λ
1
λ
2
⋯
λ
n
,
λ
i
为
A
的
特
征
值
.
d
e
t
(
A
T
)
=
d
e
t
(
A
)
d
e
t
(
A
−
1
)
=
1
d
e
t
(
A
)
d
e
t
(
c
A
)
=
c
n
d
e
t
(
A
)
d
e
t
(
A
n
)
=
d
e
t
(
A
)
n
{\rm det} (\mathbf A) = \lambda_1\lambda_2 \cdots \lambda_n ,~~ \lambda_i为\mathbf A的特征值. \\ {\rm det} (\mathbf A ^T) = {\rm det} (\mathbf A) \\ {\rm det} (\mathbf A ^{-1}) = \frac1{{\rm det} (\mathbf A)} \\ {\rm det} (c \mathbf A) = c^n {\rm det} (\mathbf A) \\ {\rm det} (\mathbf A ^n) = {\rm det} (\mathbf A)^n
det(A)=λ1λ2⋯λn, λi为A的特征值.det(AT)=det(A)det(A−1)=det(A)1det(cA)=cndet(A)det(An)=det(A)n
由第2条性质可知,若
A
\mathbf A
A是正交矩阵,即
A
T
A
=
I
\mathbf A^T \mathbf A = \mathbf I
ATA=I。有
d
e
t
(
A
T
A
)
=
d
e
t
(
A
)
2
=
d
e
t
(
I
)
=
1
{\rm det} (\mathbf A ^T \mathbf A) = {\rm det} (\mathbf A)^2 = {\rm det} (\mathbf I) = 1
det(ATA)=det(A)2=det(I)=1,故正交矩阵的行列式一定为
d
e
t
(
A
)
=
±
1
{\rm det} (\mathbf A) = ±1
det(A)=±1。
4 迹 (Trace)
A \mathbf A A为 n n n行 n n n列的方阵 [ a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋱ ⋮ a n 1 a n 2 ⋯ a n n ] \begin{bmatrix} a_{11}&a_{12}&\cdots&a_{1n}\\ a_{21}&a_{22}&\cdots&a_{2n}\\ \vdots&\vdots&\ddots&\vdots\\ a_{n1}&a_{n2}&\cdots&a_{nn}\\ \end{bmatrix} ⎣⎢⎢⎢⎡a11a21⋮an1a12a22⋮an2⋯⋯⋱⋯a1na2n⋮ann⎦⎥⎥⎥⎤。
矩阵的迹的定义式为主对角线元素之和。
t
r
(
A
)
=
a
11
+
a
22
+
⋯
+
a
n
n
{\rm tr} (\mathbf A) = a_{11}+ a_{22} +\cdots + a_{nn}
tr(A)=a11+a22+⋯+ann
矩阵的迹还等于其特征值的和。
t
r
(
A
)
=
λ
1
+
λ
2
+
⋯
+
λ
n
,
λ
i
为
A
的
特
征
值
.
{\rm tr} (\mathbf A) = \lambda_1+\lambda_2 +\cdots +\lambda_n ,~~ \lambda_i为\mathbf A的特征值.
tr(A)=λ1+λ2+⋯+λn, λi为A的特征值.
矩阵乘法运算的顺序不改变乘积的迹。
t
r
(
A
B
C
)
=
t
r
(
B
C
A
)
=
t
r
(
C
A
B
)
{\rm tr} (\mathbf A \mathbf B \mathbf C) = {\rm tr} (\mathbf B \mathbf C \mathbf A) = {\rm tr} (\mathbf C \mathbf A \mathbf B)
tr(ABC)=tr(BCA)=tr(CAB)
矩阵的和的迹等于迹的和。
t
r
(
A
+
B
)
=
t
r
(
A
)
+
t
r
(
B
)
{\rm tr} (\mathbf A + \mathbf B) = {\rm tr} (\mathbf A) + {\rm tr} (\mathbf B)
tr(A+B)=tr(A)+tr(B)
a
\mathbf a
a为
n
n
n行的列向量
[
a
1
a
2
⋮
a
n
]
\begin{bmatrix} a_{1}\\ a_{2}\\ \vdots\\ a_{n}\\ \end{bmatrix}
⎣⎢⎢⎢⎡a1a2⋮an⎦⎥⎥⎥⎤。
a
T
a
=
t
r
(
a
a
T
)
=
a
1
2
+
a
2
2
+
⋯
+
a
n
2
\mathbf a ^T \mathbf a = {\rm tr} (\mathbf a \mathbf a ^T) = a_{1}^2 + a_{2}^2 +\cdots + a_{n}^2
aTa=tr(aaT)=a12+a22+⋯+an2