1.什么是强化学习
强化学习是一种广义上的计算方法,它使机器得以通过与环境的持续互动来达成特定目标。此过程涉及机器(或称为智能体)基于当前环境状态做出行动选择,该行动对环境施加影响后,环境不仅会呈现相应变化,还会反馈给智能体一个奖励信号及新的状态信息,标志着一次交互的完成。这一系列交互在时间上连续重复,旨在促使智能体优化其行为策略,以期在整个交互序列中累积获得最大化的期望奖励。与有监督学习中被动响应的“模型”相比,强化学习框架下的“智能体”更强调主动参与和改变环境的能力,超越了单纯预测的范畴。
智能体与环境的交互模式,如图1-1所示,揭示了一种循环机制:智能体首先感知当前环境状态,据此做出行动决策并执行于环境之中;环境接收此行动后,回馈即时奖励并转换至新状态,为下一交互周期奠定基础。此过程中,智能体的功能可归纳为三大核心组件——感知、决策及奖励反馈。
感知功能使智能体能够获取环境的当前状况,如同下围棋时识别棋局布局,自动驾驶车辆监测周遭交通动态,或机器狗通过视觉及触觉传感器解析周边环境信息等。
决策是智能体基于感知到的状态,通过内部算法运算,确定下一步行动策略的核心环节。这涵盖了从围棋落子位置的选择,到自动驾驶车辆驾驶操作的决策,乃至机器狗行走步态的调整等复杂判断过程。策略的有效性直接体现了智能体的智能水平,并构成了智能体间差异性的关键。
奖励机制通过环境对智能体行为的反馈,以一个数值信号形式评估其行动质量。无论是棋局的胜负、行车的安全高效,还是维持平衡前行的能力,都是通过奖励信号量化评价的。累积最优化期望奖励成为智能体策略演进的导向标,也是评判其行为策略优劣的基准。
综上所述,强化学习作为一种解决决策问题的方法,与专注于单一预测任务的有监督学习相比,展现出显著差异。其特征包括但不限于:决策任务的多步骤、序贯性质,区别于预测任务的单一决策点;以及在多轮互动框架下,智能体必须前瞻性地考虑未来状态变化,导致短期内看似最优的行为可能并非长期策略的最佳选择。这些特性凸显了强化学习在处理复杂、动态决策问题上的独特优势与挑战。
2.强化学习的环境
强化学习框架下的智能体在与动态环境的交互过程中实施序贯决策,其中环境被视为随内在因素及外部干预(即智能体行为)演变的随机过程。这一环境动态性的数学描述依托于状态及其基于当前状态和采取动作的条件概率转移,类似于布朗运动中粒子位置受初始状态及随即变化规则支配。
具体而言,智能体的每个动作不仅基于当前环境状态做出,而且其执行效果进一步影响环境的后续状态,这一转变可抽象为一个函数关系,突显了当前状态与智能体动作的联合决定性。因此,环境未来的状态分布是当前状态与智能体决策的综合结果,这一过程中融合了双重随机性:智能体策略驱动的动作选择的随机性,以及环境根据这些输入自动生成新状态的随机性。
概览之,强化学习环境的动态随机本质要求智能体在连续变化且不确定性的场景中学习与适应,与静态数据集上的学习形成鲜明对比。智能体需不断调整策略以最大化累积奖励,这一过程深刻体现了在动态环境中求解决策问题的复杂性和挑战性,以及理解并预测环境演变规律的重要性。
3.强化学习的目标
在上述动态环境下,智能体和环境每次进行交互时,环境会产生相应的奖励信号,其往往由实数标量来表示。这个奖励信号一般是诠释当前状态或动作的好坏的及时反馈信号,好比在玩游戏的过程中某一个操作获得的分数值。整个交互过程的每一轮获得的奖励信号可以进行累加,形成智能体的整体回报(return),好比一盘游戏最后的分数值。根据环境的动态性我们可以知道,即使环境和智能体策略不变,智能体的初始状态也不变,智能体和环境交互产生的结果也很可能是不同的,对应获得的回报也会不同。因此,在强化学习中,我们关注回报的期望,并将其定义为价值(value),这就是强化学习中智能体学习的优化目标。
价值的计算有些复杂,因为需要对交互过程中每一轮智能体采取动作的概率分布和环境相应的状态转移的概率分布做积分运算。强化学习和有监督学习的学习目标其实是一致的,即在某个数据分布下优化一个分数值的期望。不过,经过后面的分析我们会发现,强化学习和有监督学习的优化途径是不同的。
4.强化学习的独特性
有监督学习与强化学习虽共享优化期望值这一核心思想,但它们在目标、方法及关注焦点上展现出明显差异:
相似之处:
- 优化目标的本质:两者均致力于优化一个关于数据期望值的目标函数,体现了对“最佳”性能的追求,无论是最小化损失还是最大化奖励。
不同之处:
- 目标函数与优化路径:
- 有监督学习旨在通过调整模型参数来最小化预测误差(如分类或回归错误),在此过程中数据集被视为固定且独立同分布的,优化的是模型在给定数据上的表现。
- 强化学习则聚焦于策略的优化,目的是使智能体在与环境的交互中累计获得最大奖励。这涉及到策略引导下交互数据分布的动态调整,从而间接影响目标(即累积奖励)的优化,策略本身成为改变“数据分布”的工具。
- 环境角色与数据性质:
- 有监督学习处理的是静态、标记的数据集,环境因素在训练过程中通常是静止不变的。
- 强化学习面对的是动态环境,智能体与环境的互动产生数据,环境反馈(奖励)指导策略调整,强调序列决策和长期规划。
- 关注焦点:
- 有监督学习核心在于模型的精准度和泛化能力,确保在未知数据上的表现。
- 强化学习更侧重于策略的有效性,即如何通过策略引导行动来最大化长期利益,这包括探索与利用的平衡、策略迭代优化等挑战。
综上,尽管两种学习范式都围绕着优化期望值进行,但它们在处理问题的方式、目标定义、以及如何适应和影响数据生成机制上存在根本区别,反映了机器学习领域内针对不同类型问题的多样化解决方案。
5.小结
强化学习相较于有监督学习,在复杂性和难度上的提升主要归结于以下几个核心要点:
-
动态数据生成:在强化学习场景中,智能体与环境的每次交互都会生成新的数据点,这些数据不仅依赖于当前策略,还受到之前所有决策的累积影响。相比之下,有监督学习的数据集是事先给定且固定的,不随学习过程变化。
-
策略与环境的相互作用:强化学习的任务要求策略不断进化以适应环境反馈,这一过程导致数据分布的动态变化,形成一种“策略改进—数据分布变化—策略再调整”的循环。这种反馈循环增加了问题的非线性和不确定性,与有监督学习中静态数据分布上的优化形成鲜明对比。
-
探索与利用的权衡:强化学习智能体需要在探索未知行为以发现可能的更高奖励与利用已知的高效策略之间做出平衡,这是有监督学习无需面对的挑战。探索可能导致短期内性能下降,但对长期成功至关重要。
-
credit assignment难题:在序列决策过程中,强化学习需要解决如何将奖励正确归因于过去的多个动作(credit assignment problem),这一问题在时间跨度长、状态空间大的任务中尤为突出,远比有监督学习中直接对应输入输出的关系复杂。
-
缺乏直接反馈与延迟奖励:不同于有监督学习中每个样本都有明确标签的即时反馈,强化学习中的奖励往往是稀疏的且延迟出现,使得学习信号更加模糊,增加了学习效率和效果的难度。
综上所述,强化学习之所以通常被认为比有监督学习更为复杂和具有挑战性,是因为它涉及到了动态策略优化、不确定性的连续适应、以及在高度互动和反馈驱动的环境中求解最优行为策略的问题,这些问题特性在传统有监督学习框架下是缺失的。