深入详解强化学习的基本概念
强化学习(Reinforcement Learning, RL)作为机器学习的一个重要分支,旨在研究智能体(Agent)如何通过与环境(Environment)的交互,学习出最优策略以最大化累积奖励。本文将深入探讨强化学习中的基本概念,包括马尔可夫决策过程(Markov Decision Process, MDP)、策略(Policy)、价值函数(Value Function)等关键概念,并详细讲解其核心原理。
目录
2.3 状态转移概率(Transition Probability)
3.1 确定性策略(Deterministic Policy)
4.1 状态价值函数(State Value Function)
4.2 行动价值函数(Action Value Function)
7. 探索与利用(Exploration vs. Exploitation)
8.2 蒙特卡罗方法(Monte Carlo Methods)
8.3 时序差分学习(Temporal-Difference Learning)
8.4 深度强化学习(Deep Reinforcement Learning)
1. 强化学习概述
强化学习是一种基于奖励机制的学习方法,智能体通过与环境的不断交互,试图找到一个最优策略,使得在长期内所获得