deep learning 卷积神经网络的实现(Convolution Neural Networks)

本节将会讲到卷积神经网络的实现。说到卷积神经网络,在图像识别和目标检测方面已经取得了不错的效果,为什么要叫做卷积神经网络呢?主要是因为在特征提取的时候,输入图像会通过卷积核对原始图像进行特征抽取,然后再通过神经网络进一步进行特征提取,也可以称为降维,再通过分类器得到分类或者识别的结果,斯坦福大学研究人员通过卷积神经网络训练猫的图像,在 YouTube 视频中找到了关于猫的视频,这也是一个强大的应用。此外在图片和视频场景理解方面, Google 和斯坦福的研究人员,研发出了一款能够描述图片场景的软件,里面的算法也有卷积神经网络,如下图所示:


人:“A group of men playing Frisbee in the park.”

计算机:“A group of young people playing a game of Frisbee.”

人: “Elephants of mixed ages standing in a muddy landscape.”
计算机: “A herd of elephants walking across a dry grass field.”

    卷积神经网络也应用于为物体贴标签,下面是实例,我想它如果运用于Google眼镜的话,“当我们看到一幅自然图片,眼镜就会显示你看到的所有东西,并给于标签,那么人的学习认知能力有多强大啊。


图片贴标签实例

    目前,卷积神经网络无疑成为计算机视觉以及模式识别领域的热门话题,它对处理多分类,大型的图片分类有着非常好的效果,本文主要包括以下几个内容:

  1.卷积神经网络的整体框架

    1.1 卷积层

    1.2 采样层

    1.3 全连接层

  2.卷积神经网络的建立(前馈网络)

  3.卷积和相关的区别

  4.核函数的选定

  5.BP反馈调节参数(反馈网络)

  6.优化方法的选定

  7.实验


1.卷积神经网络的整体框架

   下面先给出图,然后再说明这个框架。

   在上图的这个框架下,输入的是RGB图像,用到颜色信息,如果你处理的灰度图像,那么你的输入层数就为1层,但是这会降低最后识别率。输入图像(input)32×32×3,当然你要处理的图像尺寸不一样,那么你的输入层的大小就不一样了,输入的图像经过一个3×5×5的滤波器就得到了一个featuremap,由于此处的滤波未填充边缘,一个滤波器就产生一张28×28featuremap,那么用64个滤波器进行卷积,就会产生64featuremaps,这就叫做特征图(卷积层C)。不同的滤波器提取出来的特征当然不一样,这时就需要通过采样层了,采样层采用的是2×2的核,采用的均值采样,最终得到的featuremaps变为14×14×64(采样层S),得到特征再利用64个5×5×64的滤波器滤波得到6410×10×64(卷积层C),这个时候是立体的滤波,不同于平面滤波,但是原理都一样。又通过2×2的核采样得到64张5×5的featuremaps(采样层S),这时就有64×5×5=1600个神经元了,(当然你还可以用5×5×64的滤波器滤波,这时得到featuremap就为1×1了,当然这只是讨论),这1600个神经元,是最后一层采样层的每一张featuremap拉伸成一个向量的结果,一张featuremap的向量为25维,那么64张就为1600维。接下来做的工作就是降维了,可以通过普通神经网络进行降维,此处称为“全连接层”,这里我设定第一层全连接层f1的神经元个数为1024,第二层全连接层f的神经元个数为512,第二层神经元就称为一张图片的特征值,这时你要连接一个分类器,此处的分类器为softmax分类器,可以实现多分类的。

这个框架可以参见前两篇博文:

http://blog.csdn.net/hlx371240/article/details/41208515

http://blog.csdn.net/hlx371240/article/details/40015395

这样一个卷积神经网络的框架就介绍完了,里面的参数(如卷积核的大小,卷积核的数量,采样层的采样方式,如均值,max值,全连接层神经元的个数,层数)大家都可以自己进行设计,没有统一的标准。

下面是MATLAB给出的网络结构

[plain] view plain copy
  1. <span style="font-family:Times New Roman;font-size:14px;"><span style="font-family:Times New Roman;"><span style="font-size:18px;">cnn.layers = {    
  2.     struct('type', 'i','inputmaps',3 ,'inputsize',32) %input layer    
  3.     struct('type', 'c', 'outputmaps', 64, 'kernelsize', 5) %convolution layer    
  4.     struct('type', 's', 'scale', 2) %sub sampling layer    
  5.     struct('type', 'c', 'outputmaps', 64, 'kernelsize', 5) %convolution layer    
  6.     struct('type', 's', 'scale', 2) %subsampling layer  
  7.     struct('type', 'f1', 'neuron', 1024) %full-connection layer  
  8.     struct('type', 'f', 'neuron', 512)  %full-connection layer  
  9.     struct('type', 'o', 'scale', 10)  
  10. };  </span></span></span>  
   可以看到该卷积神经网络一共有 8层(层数可以自己设定),可以看出,整个网络有1层输入层,2层卷积层,2层采样层,2层全连阶层,以及1层输出层。

 1.1卷积层

   此处的卷积跟图像里面的卷积一样,但是不是事先训练好的,而是随机产生的卷积核,而且卷积核的大小都是自己设定的。你可以设定为任意尺寸大小,如5×5,6×6等,当然卷积核不一定都为正方形,可以是矩形,如7×6,8×9等等都行,这只是单层核, 也可以是多层核,假如输入图像是RGB的图像,含有3通道,那么你需要设定一个3D核,一个3D核与输入图像就得到一张特征图featuremap643D核就得到64featuremaps

    另外我们来看卷积过后的图像大小,其实在前面的博文中已经指出来了,卷积神经网络做卷积的时候,原图是不进行扩充的,所以卷积过后图片是会减小的,比如,20×20的图片,现在有5×5的核去卷积,那么就得到(20-5)+1×(20-5)+1=16×16大小的featuremap,对于3D核也是一样的。

可以参见博文:http://blog.csdn.net/hlx371240/article/details/41208515

  1.2  采样层
      
采样层一般是正方形的核函数,这个核函数可以是均值核,也可以是求取核区域的最大值,用均值核叫做meanpooling,用求取区域最大值的核称为maxpooling。对于卷积得到的大小为30×30的图像,假如我们采用2×2的核函数采样,那么就得到15×15大小的图像,如果采用3×3的核函数,就产生了10×10大小的图像,如果有人用4×4的核,那么30不能整除4,所以选择这个尺寸的核函数不太合适,你可以选择5×5的核。采样是图像特征的进一步抽取。

可以参见博文:http://blog.csdn.net/hlx371240/article/details/41208515

2.卷积神经网络的建立(前馈网络)

   卷积神经网络分为前馈网络和反馈网络,前馈网络可以说是得到最终概率值然后进行判别。

第一层:一个5×5×3的卷积核和输入的32×32×3RGB图像做卷积,卷积核是3层,RGB也为3层,他们分别做卷积然后相加,这样就得到一张28×28的图像,此处的图像就为一个通道了。我们可以用64个卷积核对图像进行卷积,这样就得到6428×28大小的图像。(每一个卷积后得到值都要经过非线性变换,如一些非线性的核函数)卷积后再用2×2的采样核,得到14×14大小的图像,由于上一层有64featuremaps,采样不会改变featuremaps的数量,还是64featuremaps。然后经过第二次卷积,这时的卷积核是5×5×64的大小,是个3D的核函数,一共含有64层,每一层与上层采样的64张featuremaps分别做卷积得到一张featuremap,同样的用645×5×64核函数就得到64featuremaps(每一个卷积后得到值都要经过非线性变化)。卷积后产生了64张10×10大小的图像,这时再经过采样得到645×5大小的子图,一共加起来为1600个神经元,当然此时还有可以用64个5×5×64的卷积核卷积,得到64个单独的神经元。现在我没有加入这层,而是1600个神经元。这时就可以用普通的神经网络再进行降维。



当然最后一层接的是Softmax分类器。

可以参见博文:http://blog.csdn.net/hlx371240/article/details/40015395

Ng的文章Sparse autoencoderhttp://nlp.stanford.edu/~socherr/sparseAutoencoder_2011new.pdf


cnnff.m

[plain] view plain copy
  1. <span style="font-family:Times New Roman;font-size:14px;">function net = cnnff(net, x)  
  2. [A B C D]=size(x);  
  3. inputmaps = net.layers{1}.inputmaps; % 输入层只有一个特征map,也就是原始的输入图像  
  4. n = numel(net.layers); % 层数  
  5. for i=1:inputmaps  
  6.     channel=reshape(x(:,:,i,:),net.layers{1}.inputsize,net.layers{1}.inputsize,D);  
  7.     net.layers{1}.a{i}=channel; % 网络的第一层就是输入,但这里的输入包含了多个训练图像  
  8. end  
  9.   
  10. for l = 2 : n   %  for each layer  
  11.     if strcmp(net.layers{l}.type, 'c') % 卷积层  
  12.         %  !!below can probably be handled by insane matrix operations  
  13.         % 对每一个输入map,或者说我们需要用outputmaps个不同的卷积核去卷积图像  
  14.         for j = 1 : net.layers{l}.outputmaps   %  for each output map  
  15.             %  create temp output map  
  16.             % 对上一层的每一张特征map,卷积后的特征map的大小就是  
  17.             % (输入map宽 - 卷积核的宽 + 1)* (输入map高 - 卷积核高 + 1)  
  18.             % 对于这里的层,因为每层都包含多张特征map,对应的索引保存在每层map的第三维  
  19.             % 所以,这里的z保存的就是该层中所有的特征map了  
  20.             z = zeros(size(net.layers{l - 1}.a{1}) - [net.layers{l}.kernelsize - 1 net.layers{l}.kernelsize - 1 0]);  
  21.             for i = 1 : inputmaps   %  for each input map  
  22.                 %  convolve with corresponding kernel and add to temp output map  
  23.                 % 将上一层的每一个特征map(也就是这层的输入map)与该层的卷积核进行卷积  
  24.                 % 然后将对上一层特征map的所有结果加起来。也就是说,当前层的一张特征map,是  
  25.                 % 用一种卷积核去卷积上一层中所有的特征map,然后所有特征map对应位置的卷积值的和  
  26.                 % 另外,有些论文或者实际应用中,并不是与全部的特征map链接的,有可能只与其中的某几个连接  
  27.                 z = z + convn(net.layers{l - 1}.a{i}, net.layers{l}.k{i}{j}, 'valid');  
  28.             end  
  29.             %  add bias, pass through nonlinearity  
  30.             % 加上对应位置的基b,然后再用sigmoid函数算出特征map中每个位置的激活值,作为该层输出特征map  
  31.             net.layers{l}.a{j} = relu(z + net.layers{l}.b{j});  
  32.         end  
  33.         %  set number of input maps to this layers number of outputmaps  
  34.         inputmaps = net.layers{l}.outputmaps;  
  35.     elseif strcmp(net.layers{l}.type, 's') % 下采样层  
  36.         %  downsample  
  37.         for j = 1 : inputmaps  
  38.             %  !! replace with variable  
  39.             % 例如我们要在scale=2的域上面执行mean pooling,那么可以卷积大小为2*2,每个元素都是1/4的卷积核  
  40.             z = convn(net.layers{l - 1}.a{j}, ones(net.layers{l}.scale) / (net.layers{l}.scale ^ 2), 'valid');  
  41.             % 因为convn函数的默认卷积步长为1,而pooling操作的域是没有重叠的,所以对于上面的卷积结果  
  42.             % 最终pooling的结果需要从上面得到的卷积结果中以scale=2为步长,跳着把mean pooling的值读出来  
  43.             net.layers{l}.a{j} = z(1 : net.layers{l}.scale : end, 1 : net.layers{l}.scale : end, :);  
  44.         end  
  45.     elseif strcmp(net.layers{l}.type, 'f1')  
  46.         net.layers{l-1}.fv = [];  
  47.         for j = 1 : numel(net.layers{l-1}.a) % 最后一层的特征map的个数  
  48.             sa = size(net.layers{l-1}.a{j}); % 第j个特征map的大小  
  49.             % 将所有的特征map拉成一条列向量。还有一维就是对应的样本索引。每个样本一列,每列为对应的特征向量  
  50.             net.layers{l-1}.fv = [net.layers{l-1}.fv; reshape(net.layers{l-1}.a{j}, sa(1) * sa(2), sa(3))];  
  51.         end  
  52.         net.layers{l}.a = relu(net.layers{l-1}.ffW * net.layers{l-1}.fv + repmat(net.layers{l-1}.ffb, 1, size(net.layers{l-1}.fv, 2)));  
  53.     elseif strcmp(net.layers{l}.type, 'f')  
  54.         net.layers{l}.a = relu(net.layers{l-1}.ffW * net.layers{l-1}.a+repmat(net.layers{l-1}.ffb, 1, size(net.layers{l-1}.a, 2)));  
  55.     elseif strcmp(net.layers{l}.type, 'o')  
  56.         net.layers{l}.a = relu(net.layers{l-1}.ffW * net.layers{l-1}.a+repmat(net.layers{l-1}.ffb, 1, size(net.layers{l-1}.a, 2)));  
  57.     end  
  58. end  
  59. end</span>  


3.卷积和相关的区别
          下面直接给一张图来说明卷积和相关的区别


    相关是核直接与原图像做线性运算,而卷积是需要把核做180度然后再做线性相加运算。

rot180.m

[plain] view plain copy
  1. <span style="font-family:Times New Roman;">function X = rot180(X)  
  2. X = flipdim(flipdim(X, 1), 2);  
  3. end</span>  


4.核函数的选定

   下面介绍3种核函数tanh,sigmiod,Relu核函数,分别给出它们的图像


下面分别画出它们的导数的图像


    一般的神经网络选用的是sigmoid核函数,但是对于深度网络来说,反馈时的系数太小,导致从最后一层反馈到第一层的参数已经太小,深度网络很多人选用Relu核,在这篇文章中Imagenet classification with deep convolutional neural networks选用的Relu核,并产生了很好的效果,代码在https://code.google.com/p/cuda-convnet/中,这个代码是用C++python写的。


5.BP反馈调节参数(反馈网络)

参考文章:http://nlp.stanford.edu/~socherr/sparseAutoencoder_2011new.pdf

Jake Bouvrie, Notes on Convolutional Neural Networks


现在我只讲卷积反馈,普通神经网络的反馈可以参见文章http://nlp.stanford.edu/~socherr/sparseAutoencoder_2011new.pdf

第一层全连接层通过反馈得到1600个神经元的误差d,然后组合成5×5×64的形式,这个是误差featuremaps,上采样得到10×10×64featuremaps,这是卷积层的误差d,一共有64层,每一层需要跟前馈网络的14×14×64分别做卷积,得到一个5×5×64的核的误差d(也可以称为梯度),这样64层分别与前馈网络做卷积就能到645×5×64个核函数的误差d,可以参见上图的3,最后要乘以核函数的导数,再通过4求出每一个参数的△W△b.

cnnbp.m

[plain] view plain copy
  1. <span style="font-family:Times New Roman;font-size:14px;">function net = cnnbp(net, y)</span>  
[plain] view plain copy
  1. <div style="text-align: left;"><span style="font-family:Times New Roman;font-size:14px;"><strong style="line-height: 26px; color: rgb(102, 102, 0); background-color: rgb(255, 255, 255);"></strong></span></div><span style="font-family:Times New Roman;font-size:14px;">n = numel(net.layers); % 网络层数  
  2. %  error  
  3. net.layers{n}.e = net.layers{n}.a - y;  
  4. %  loss function  
  5. % 代价函数是 均方误差  
  6. net.layers{n}.L = 1/2* sum(net.layers{n}.e(:) .^ 2) / size(net.layers{n}.e, 2);  
  7.   
  8. %%  backprop deltas  
  9. % 这里可以参考 UFLDL 的 反向传导算法 的说明  
  10. % 输出层的 灵敏度 或者 残差  
  11.         net.layers{8}.od = net.layers{8}.e .* ReluInv(net.layers{8}.a);   %  output delta  
  12.         % 残差 反向传播回 前一层  
  13.         net.layers{7}.d = (net.layers{7}.ffW' * net.layers{8}.od) .* ReluInv(net.layers{7}.a); %  feature vector delta  
  14.         net.layers{6}.d = (net.layers{6}.ffW' * net.layers{7}.d) .* ReluInv(net.layers{6}.a);  
  15.         net.layers{5}.fvd = (net.layers{5}.ffW' * net.layers{6}.d);  
  16.         %     net.layers{l-1}.d = net.layers{l-1}.fvd .* (net.layers{l-1}.o .* (1-net.layers{l-1}));  
  17.         %     if strcmp(net.layers{n}.type, 'c')         %  only conv layers has sigm function  
  18.         %         net.fvd = net.fvd .* (net.fv .* (1 - net.fv));  
  19.         %     end  
  20.         %  reshape feature vector deltas into output map style  
  21.         sa = size(net.layers{5}.a{1}); % 最后一层特征map的大小。这里的最后一层都是指输出层的前一层  
  22.         fvnum = sa(1) * sa(2); % 因为是将最后一层特征map拉成一条向量,所以对于一个样本来说,特征维数是这样  
  23.         for j = 1 : numel(net.layers{5}.a) % 最后一层的特征map的个数  
  24.             % 在fvd里面保存的是所有样本的特征向量(在cnnff.m函数中用特征map拉成的),所以这里需要重新  
  25.             % 变换回来特征map的形式。d 保存的是 delta,也就是 灵敏度 或者 残差  
  26.             net.layers{5}.d{j} = reshape(net.layers{5}.fvd(((j - 1) * fvnum + 1) : j * fvnum, :), sa(1), sa(2), sa(3));  
  27.         end        
  28.         % 对于 输出层前面的层(与输出层计算残差的方式不同)  
  29.    for l = (n - 4) : -1 : 1  
  30.     if strcmp(net.layers{l}.type, 'c')  
  31.         for j = 1 : numel(net.layers{l}.a) % 该层特征map的个数  
  32.             % net.layers{l}.d{j} 保存的是 第l层 的 第j个 map 的 灵敏度map。 也就是每个神经元节点的delta的值  
  33.             % expand的操作相当于对l+1层的灵敏度map进行上采样。然后前面的操作相当于对该层的输入a进行sigmoid求导  
  34.             % 这条公式请参考 Notes on Convolutional Neural Networks  
  35.             % for k = 1:size(net.layers{l + 1}.d{j}, 3)  
  36.             % net.layers{l}.d{j}(:,:,k) = net.layers{l}.a{j}(:,:,k) .* (1 - net.layers{l}.a{j}(:,:,k)) .*  kron(net.layers{l + 1}.d{j}(:,:,k), ones(net.layers{l + 1}.scale)) / net.layers{l + 1}.scale ^ 2;  
  37.             % end  
  38.             net.layers{l}.d{j} = ReluInv(net.layers{l}.a{j}) .* (expand(net.layers{l + 1}.d{j}, [net.layers{l + 1}.scale net.layers{l + 1}.scale 1]) / net.layers{l + 1}.scale ^ 2);  
  39.         end  
  40.     elseif strcmp(net.layers{l}.type, 's')  
  41.         for i = 1 : numel(net.layers{l}.a) % 第l层特征map的个数  
  42.             z = zeros(size(net.layers{l}.a{1}));  
  43.             for j = 1 : numel(net.layers{l + 1}.a) % 第l+1层特征map的个数  
  44.                 z = z + convn(net.layers{l + 1}.d{j}, rot180(net.layers{l + 1}.k{i}{j}), 'full');  
  45.             end  
  46.             net.layers{l}.d{i} = z;  
  47.         end  
  48.     end  
  49. end  
  50.   
  51. %%  calc gradients  
  52. % 这里与 Notes on Convolutional Neural Networks 中不同,这里的 子采样 层没有参数,也没有  
  53. % 激活函数,所以在子采样层是没有需要求解的参数的  
  54. for l = 2 : n  
  55.     if strcmp(net.layers{l}.type, 'c')  
  56.         for j = 1 : numel(net.layers{l}.a)  
  57.             for i = 1 : numel(net.layers{l - 1}.a)  
  58.                 % dk 保存的是 误差对卷积核 的导数  
  59.                 net.layers{l}.dk{i}{j} = convn(flipall(net.layers{l - 1}.a{i}), net.layers{l}.d{j}, 'valid') / size(net.layers{l}.d{j}, 3);  
  60.             end  
  61.             % db 保存的是 误差对于bias基 的导数  
  62.             net.layers{l}.db{j} = sum(net.layers{l}.d{j}(:)) / size(net.layers{l}.d{j}, 3);  
  63.         end  
  64.     elseif strcmp(net.layers{l}.type, 'f1')  
  65.         net.layers{l-1}.dffW = net.layers{l}.d * net.layers{l-1}.fv'/ size(net.layers{l}.d, 2);  
  66.         net.layers{l-1}.dffb = mean(net.layers{l}.d, 2);  
  67.     elseif strcmp(net.layers{l}.type, 'f')  
  68.         net.layers{l-1}.dffW = net.layers{l}.d * net.layers{l-1}.a'/ size(net.layers{l}.d, 2);  
  69.         net.layers{l-1}.dffb = mean(net.layers{l}.d, 2);  
  70.     elseif strcmp(net.layers{l}.type, 'o')  
  71.         net.layers{l-1}.dffW = net.layers{l}.od * net.layers{l-1}.a'/ size(net.layers{l}.od, 2);  
  72.         net.layers{l-1}.dffb = mean(net.layers{l}.od, 2);  
  73.     end  
  74. end  
  75. end</span>  


6.优化方法选定

   优化方法包括梯度法,共轭梯度法,牛顿法,拟牛顿法,但是很多国外大牛都直接用随机批量梯度法,学习率(步长)是按照经验取的,下面给出更新公式,可以结合上面一节。


   大家在更新的时候不用管λW这一项,m代表每次批量处理的图像。


7.实验

实验采用的是cifar-10数据库,如下图所示


cnnexample.m

[plain] view plain copy
  1. <span style="font-family:Times New Roman;font-size:14px;">clear all; close all; clc;   </span>  
[plain] view plain copy
  1. <div style="text-align: left;"><span style="font-family:Times New Roman;font-size:14px;"><strong style="color: rgb(51, 0, 153); line-height: 26px; text-align: center; background-color: rgb(255, 255, 255);"></strong></span></div><span style="font-family:Times New Roman;font-size:14px;">load('traindata.mat');  
  2. load('testdata.mat');  
  3. load('trainlabel.mat');  
  4. load('testlabel.mat');  
  5. train_x = traindata;    
  6. test_x = testdata;   
  7. trainlabel=double(trainlabel);  
  8. trainlabel(trainlabel==0) = 10;  
  9. train_y  = full(sparse(trainlabel, 1:50000, 1));  
  10. testlabel=double(testlabel);  
  11. testlabel(testlabel==0) = 10;  
  12. test_y  = full(sparse(testlabel, 1:10000, 1));  
  13. %% ex1     
  14. %will run 1 epoch in about 200 second and get around 11% error.     
  15. %With 100 epochs you'll get around 1.2% error    
  16. clear traindata testdata trainlabel testlabel    
  17. cnn.layers = {    
  18.     struct('type', 'i','inputmaps',3 ,'inputsize',32) %input layer    
  19.     struct('type', 'c', 'outputmaps', 64, 'kernelsize', 5) %convolution layer    
  20.     struct('type', 's', 'scale', 2) %sub sampling layer    
  21.     struct('type', 'c', 'outputmaps', 64, 'kernelsize', 5) %convolution layer    
  22.     struct('type', 's', 'scale', 2) %subsampling layer  
  23.     struct('type', 'f1', 'neuron', 1024) %full-connection layer  
  24.     struct('type', 'f', 'neuron', 512)  %full-connection layer  
  25.     struct('type', 'o', 'scale', 10)  
  26. };    
  27.     
  28. % 这里把cnn的设置给cnnsetup,它会据此构建一个完整的CNNs网络,并返回    
  29. cnn = cnnsetup(cnn, train_x, train_y);    
  30.     
  31. % 学习率    
  32. opts.alpha = 0.5;    
  33. % 每次挑出一个batchsize的batch来训练,也就是每用batchsize个样本就调整一次权值,而不是    
  34. % 把所有样本都输入了,计算所有样本的误差了才调整一次权值    
  35. opts.batchsize = 200;     
  36. % 训练次数,用同样的样本集。我训练的时候:    
  37. % 1的时候 11.41% error    
  38. % 5的时候 4.2% error    
  39. % 10的时候 2.73% error    
  40. opts.numepochs = 50;    
  41.     
  42. % 然后开始把训练样本给它,开始训练这个CNN网络    
  43. cnn = cnntrain(cnn, train_x, train_y, opts);    
  44.     
  45. % 然后就用测试样本来测试    
  46. [er, bad] = cnntest(cnn, test_x, test_y);    
  47.     
  48. %plot mean squared error    
  49. plot(cnn.rL);    
  50. %show test error    
  51. disp([num2str(er*100) '% error']); </span>  

cnntrain.m

[plain] view plain copy
  1. <span style="font-family:Times New Roman;font-size:14px;">function net = cnntrain(net, x, y, opts)    
  2.     m = size(x, 4); % m 保存的是 训练样本个数    
  3.     numbatches = m / opts.batchsize;    
  4.     % rem: Remainder after division. rem(x,y) is x - n.*y 相当于求余    
  5.     % rem(numbatches, 1) 就相当于取其小数部分,如果为0,就是整数    
  6.     if rem(numbatches, 1) ~= 0    
  7.         error('numbatches not integer');    
  8.     end    
  9.         
  10.     net.rL = [];    
  11.     for i = 1 : opts.numepochs    
  12.         % disp(X) 打印数组元素。如果X是个字符串,那就打印这个字符串    
  13.         disp(['epoch ' num2str(i) '/' num2str(opts.numepochs)]);    
  14.         % tic 和 toc 是用来计时的,计算这两条语句之间所耗的时间    
  15.         tic;    
  16.         % P = randperm(N) 返回[1, N]之间所有整数的一个随机的序列,例如    
  17.         % randperm(6) 可能会返回 [2 4 5 6 1 3]    
  18.         % 这样就相当于把原来的样本排列打乱,再挑出一些样本来训练    
  19.         kk = randperm(m);    
  20.         for l = 1 : numbatches    
  21.             % 取出打乱顺序后的batchsize个样本和对应的标签    
  22.             batch_x = x(:, :, : ,kk((l - 1) * opts.batchsize + 1 : l * opts.batchsize));    
  23.             batch_y = y(:,    kk((l - 1) * opts.batchsize + 1 : l * opts.batchsize));    
  24.     
  25.             % 在当前的网络权值和网络输入下计算网络的输出    
  26.             net = cnnff(net, batch_x); % Feedforward    
  27.             % 得到上面的网络输出后,通过对应的样本标签用bp算法来得到误差对网络权值    
  28.             %(也就是那些卷积核的元素)的导数    
  29.             net = cnnbp(net, batch_y); % Backpropagation    
  30.             % 得到误差对权值的导数后,就通过权值更新方法去更新权值    
  31.             net = cnnapplygrads(net, opts);    
  32.             if isempty(net.rL)    
  33.                 net.rL(1) = net.layers{8}.L; % 代价函数值,也就是误差值    
  34.             end    
  35.             net.rL(end + 1) = 0.99 * net.rL(end) + 0.01 * net.layers{8}.L; % 保存历史的误差值,以便画图分析    
  36.         end    
  37.         toc;    
  38.     end    
  39.         
  40. end  </span>  

cnntest.m
[plain] view plain copy
  1. <span style="font-family:Times New Roman;font-size:14px;">function [er, bad] = cnntest(net, x, y)    
  2.     %  feedforward    
  3.     net = cnnff(net, x); % 前向传播得到输出    
  4.     % [Y,I] = max(X) returns the indices of the maximum values in vector I    
  5.     [~, h] = max(net.o); % 找到最大的输出对应的标签    
  6.     [~, a] = max(y);     % 找到最大的期望输出对应的索引    
  7.     bad = find(h ~= a);  % 找到他们不相同的个数,也就是错误的次数    
  8.     er = numel(bad) / size(y, 2); % 计算错误率    
  9. end  </span>  

flipall.m
[plain] view plain copy
  1. <span style="font-family:Times New Roman;font-size:14px;">function X=flipall(X)  
  2.     for i=1:ndims(X)  
  3.         X = flipdim(X,i);  
  4.     end  
  5. end</span>  

relu.m
[plain] view plain copy
  1. <span style="font-family:Times New Roman;font-size:14px;">function X = relu(P)  
  2.      X=log(1+exp(P));  
  3. end</span>  
ReluInv.m
[plain] view plain copy
  1. <span style="font-family:Times New Roman;font-size:14px;">function reluInv=ReluInv(x)  
  2. reluInv = exp(x)./(1 + exp(x));  
  3. end</span>  
expand.m
[plain] view plain copy
  1. <span style="font-family:Times New Roman;font-size:14px;">function B = expand(A, S)  
  2. if nargin < 2  
  3.     error('Size vector must be provided.  See help.');  
  4. end  
  5.   
  6. SA = size(A);  % Get the size (and number of dimensions) of input.  
  7.   
  8. if length(SA) ~= length(S)  
  9.    error('Length of size vector must equal ndims(A).  See help.')  
  10. elseif any(S ~= floor(S))  
  11.    error('The size vector must contain integers only.  See help.')  
  12. end  
  13.   
  14. T = cell(length(SA), 1);  
  15. for ii = length(SA) : -1 : 1  
  16.     H = zeros(SA(ii) * S(ii), 1);   %  One index vector into A for each dim.  
  17.     H(1 : S(ii) : SA(ii) * S(ii)) = 1;   %  Put ones in correct places.  
  18.     T{ii} = cumsum(H);   %  Cumsumming creates the correct order.  
  19. end  
  20.   
  21. B = A(T{:});  </span>  


cnnsetup.m

[plain] view plain copy
  1. <span style="font-family:Times New Roman;font-size:14px;">function net = cnnsetup(net, x, y)  
  2. inputmaps = net.layers{1}.inputmaps;  
  3. % B=squeeze(A) 返回和矩阵A相同元素但所有单一维都移除的矩阵B,单一维是满足size(A,dim)=1的维。  
  4. % train_x中图像的存放方式是三维的reshape(train_x',28,28,60000),前面两维表示图像的行与列,  
  5. % 第三维就表示有多少个图像。这样squeeze(x(:, :, 1))就相当于取第一个图像样本后,再把第三维  
  6. % 移除,就变成了28x28的矩阵,也就是得到一幅图像,再size一下就得到了训练样本图像的行数与列数了  
  7. mapsize = size(squeeze(x(:, :, 1)));  
  8.   
  9. % 下面通过传入net这个结构体来逐层构建CNN网络  
  10. % n = numel(A)返回数组A中元素个数  
  11. % net.layers中有五个struct类型的元素,实际上就表示CNN共有五层,这里范围的是5  
  12. for l = 1 : numel(net.layers)   %  layer  
  13.     if strcmp(net.layers{l}.type, 's') % 如果这层是 子采样层  
  14.         % subsampling层的mapsize,最开始mapsize是每张图的大小28*28  
  15.         % 这里除以scale=2,就是pooling之后图的大小,pooling域之间没有重叠,所以pooling后的图像为14*14  
  16.         % 注意这里的右边的mapsize保存的都是上一层每张特征map的大小,它会随着循环进行不断更新  
  17.         mapsize = floor(mapsize / net.layers{l}.scale);  
  18.         for j = 1 : inputmaps % inputmap就是上一层有多少张特征图  
  19.             net.layers{l}.b{j} = 0; % 将偏置初始化为0  
  20.         end  
  21.     end  
  22.     if strcmp(net.layers{l}.type, 'c') % 如果这层是 卷积层  
  23.         % 旧的mapsize保存的是上一层的特征map的大小,那么如果卷积核的移动步长是1,那用  
  24.         % kernelsize*kernelsize大小的卷积核卷积上一层的特征map后,得到的新的map的大小就是下面这样  
  25.         mapsize = mapsize - net.layers{l}.kernelsize + 1;  
  26.         % 该层需要学习的参数个数。每张特征map是一个(后层特征图数量)*(用来卷积的patch图的大小)  
  27.         % 因为是通过用一个核窗口在上一个特征map层中移动(核窗口每次移动1个像素),遍历上一个特征map  
  28.         % 层的每个神经元。核窗口由kernelsize*kernelsize个元素组成,每个元素是一个独立的权值,所以  
  29.         % 就有kernelsize*kernelsize个需要学习的权值,再加一个偏置值。另外,由于是权值共享,也就是  
  30.         % 说同一个特征map层是用同一个具有相同权值元素的kernelsize*kernelsize的核窗口去感受输入上一  
  31.         % 个特征map层的每个神经元得到的,所以同一个特征map,它的权值是一样的,共享的,权值只取决于  
  32.         % 核窗口。然后,不同的特征map提取输入上一个特征map层不同的特征,所以采用的核窗口不一样,也  
  33.         % 就是权值不一样,所以outputmaps个特征map就有(kernelsize*kernelsize+1)* outputmaps那么多的权值了  
  34.         % 但这里fan_out只保存卷积核的权值W,偏置b在下面独立保存  
  35.         fan_out = net.layers{l}.outputmaps * net.layers{l}.kernelsize ^ 2;  
  36.         for j = 1 : net.layers{l}.outputmaps  %  output map  
  37.             % fan_out保存的是对于上一层的一张特征map,我在这一层需要对这一张特征map提取outputmaps种特征,  
  38.             % 提取每种特征用到的卷积核不同,所以fan_out保存的是这一层输出新的特征需要学习的参数个数  
  39.             % 而,fan_in保存的是,我在这一层,要连接到上一层中所有的特征map,然后用fan_out保存的提取特征  
  40.             % 的权值来提取他们的特征。也即是对于每一个当前层特征图,有多少个参数链到前层  
  41.             fan_in = inputmaps * net.layers{l}.kernelsize ^ 2;  
  42.             for i = 1 : inputmaps  %  input map  
  43.                 % 随机初始化权值,也就是共有outputmaps个卷积核,对上层的每个特征map,都需要用这么多个卷积核  
  44.                 % 去卷积提取特征。  
  45.                 % rand(n)是产生n×n的 0-1之间均匀取值的数值的矩阵,再减去0.5就相当于产生-0.5到0.5之间的随机数  
  46.                 % 再 *2 就放大到 [-1, 1]。然后再乘以后面那一数,why?  
  47.                 % 反正就是将卷积核每个元素初始化为[-sqrt(6 / (fan_in + fan_out)), sqrt(6 / (fan_in + fan_out))]  
  48.                 % 之间的随机数。因为这里是权值共享的,也就是对于一张特征map,所有感受野位置的卷积核都是一样的  
  49.                 % 所以只需要保存的是 inputmaps * outputmaps 个卷积核。  
  50.                 net.layers{l}.k{i}{j} = (rand(net.layers{l}.kernelsize) - 0.5) * 2 * sqrt(6 / (fan_in + fan_out));  
  51.             end  
  52.             net.layers{l}.b{j} = 0; % 将偏置初始化为0  
  53.         end  
  54.         % 只有在卷积层的时候才会改变特征map的个数,pooling的时候不会改变个数。这层输出的特征map个数就是  
  55.         % 输入到下一层的特征map个数  
  56.         inputmaps = net.layers{l}.outputmaps;  
  57.     end  
  58.     if strcmp(net.layers{l}.type, 'f1')  
  59.         fvnum = prod(mapsize) * inputmaps;  
  60.         onum = net.layers{l}.neuron;  
  61.         net.layers{l-1}.ffb = zeros(onum, 1);  
  62.         net.layers{l-1}.ffW = (rand(onum, fvnum) - 0.5) * 2 * sqrt(6 / (onum + fvnum));  
  63.     end  
  64.     if strcmp(net.layers{l}.type, 'f')  
  65.         fvnum = net.layers{l-1}.neuron;  
  66.         onum = net.layers{l}.neuron;  
  67.         net.layers{l-1}.ffb = zeros(onum, 1);  
  68.         net.layers{l-1}.ffW = (rand(onum, fvnum) - 0.5) * 2 * sqrt(6 / (onum + fvnum));  
  69.     end  
  70.     if strcmp(net.layers{l}.type, 'o')  
  71.         fvnum = net.layers{l-1}.neuron;  
  72.         onum = net.layers{l}.scale;  
  73.         net.layers{l-1}.ffb = zeros(onum, 1);  
  74.         net.layers{l-1}.ffW = (rand(onum, fvnum) - 0.5) * 2 * sqrt(6 / (onum + fvnum));  
  75.     end  
  76.     % fvnum 是输出层的前面一层的神经元个数。  
  77.     % 这一层的上一层是经过pooling后的层,包含有inputmaps个特征map。每个特征map的大小是mapsize。  
  78.     % 所以,该层的神经元个数是 inputmaps * (每个特征map的大小)  
  79.     % prod: Product of elements.  
  80.     % For vectors, prod(X) is the product of the elements of X  
  81.     % 在这里 mapsize = [特征map的行数 特征map的列数],所以prod后就是 特征map的行*列  
  82.     %fvnum = prod(mapsize) * inputmaps;  
  83.     % onum 是标签的个数,也就是输出层神经元的个数。你要分多少个类,自然就有多少个输出神经元  
  84.     %onum = size(y, 1);  
  85.     % 这里是最后一层神经网络的设定  
  86.     % ffb 是输出层每个神经元对应的基biases  
  87.     %net.ffb = zeros(onum, 1);  
  88.     % ffW 输出层前一层 与 输出层 连接的权值,这两层之间是全连接的  
  89.     %net.ffW = (rand(onum, fvnum) - 0.5) * 2 * sqrt(6 / (onum + fvnum));  
  90. end</span>  


数据准备:整个数据为4-D的double型数据

每一维数据是这样的,前2维代表每一帧图像的大小,如文章中指的32×32,第3维代表输入图片的通道,一共为3通道,那么前3维就组成了一个样本,第4维代表样本的数量。这样就生成了训练集。测试集也一样。

数据的标签:

trainlabel=double(trainlabel);

trainlabel(trainlabel==0) = 10;

train_y  = full(sparse(trainlabel, 1:50000, 1));

每一类分别给出相应的标签,如1,2,3,…,n



  • 1
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
基于Matlab的卷积神经网络Convolutional Neural Networks, CNN)图像分类代码可以使用Matlab的深度学习工具箱(Deep Learning Toolbox)来实现。下面是一个简单的示例代码: 1. 数据预处理:首先,需要将图像数据准备为CNN所需的格式。可以使用`imageDatastore`函数创建图像数据存储对象。 ```matlab imds = imageDatastore('path_to_images', 'IncludeSubfolders', true, 'LabelSource', 'foldernames'); ``` 其中,`path_to_images`是存放图像的文件夹路径,`IncludeSubfolders`参数设置为`true`表示包含子文件夹中的图像,`LabelSource`参数设置为`foldernames`表示使用文件夹的名称作为类别标签。 2. 构建CNN模型:使用`LayerGraph`对象创建CNN的网络结构。 ```matlab layers = [ imageInputLayer([32 32 3]) convolution2dLayer(3, 16, 'Padding', 'same') reluLayer() maxPooling2dLayer(2, 'Stride', 2) fullyConnectedLayer(10) softmaxLayer() classificationLayer() ]; lgraph = layerGraph(layers); ``` 上述代码中的网络结构包含了输入图像层、卷积层、ReLU激活层、池化层、全连接层、Softmax层和分类层。这只是一个简单的示例,实际应用中可以根据需要调整网络结构。 3. 训练CNN模型:使用`trainNetwork`函数对CNN模型进行训练。 ```matlab options = trainingOptions('sgdm', 'MaxEpochs', 10, 'InitialLearnRate', 0.001); trainedNet = trainNetwork(imds, lgraph, options); ``` 上述代码中的`trainingOptions`函数指定了优化器为随机梯度下降(stochastic gradient descent, SGD),训练时的最大轮数为10,初始学习率为0.001。可以根据需求进行更多的配置。 4. 图像分类:使用训练好的CNN模型对新的图像进行分类。 ```matlab im = imread('path_to_test_image'); im = imresize(im, [32 32]); label = classify(trainedNet, im); ``` 其中,`path_to_test_image`为待分类的图像路径。`imresize`函数将图像调整为与训练集相同的大小,`classify`函数根据训练好的网络对图像进行分类,并返回预测的标签。 这只是一个基于Matlab的卷积神经网络图像分类代码的简单示例,可以根据具体需求进行代码的修改和扩展。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值