3.5 曲率的概念及计算公式
3.5.1 概念
来源:为了平衡曲线的弯曲程度。
平均曲率
,这个定义描述了AB曲线上的平均弯曲程度。其中
表示曲线段AB上切线变化的角度,
为AB弧长。
例:对于圆,
。所以:圆周的曲率为
,是常数。
而直线上
,所以
,即直线“不弯曲”。
对于一个点,如A点,为精确刻画此点处曲线的弯曲程度,可令
,即定义
,为了方便使用,一般令曲率为正数,即:
。
3.5.2 计算公式的推导:
由于
,所以要推导
与ds的表示法,ds称为曲线弧长的微分(T5-28,P218)
因为
,所以
。
令
,同时用
代替
得![]()
所以
或![]()
具体表示;
1、
时,![]()
2、
时,![]()
3、
时,
(令
)
再推导
,因为
,所以
,两边对x求导,得
,推出
。
下面将
与ds代入
公式中:
,即为曲率的计算公式。
3.5.3 曲率半径:
一般称
为曲线在某一点的曲率半径。
几何意义(T5-29)如图为在该点做曲线的法线(在凹的一侧),在法线上取圆心,以ρ为半径做圆,则此圆称为该点处的曲率圆。曲率圆与该点有相同的曲率,切线及一阶、两阶稻树。
应用举例:求
上任一点的曲率及曲率半径(T5-30)
解:由于:![]()
所以:
,![]()
博客介绍了曲率的概念,其来源是平衡曲线弯曲程度,给出平均曲率定义,通过圆和直线举例说明。推导了曲率计算公式,还介绍了曲率半径,给出其几何意义,并通过实例展示如何求曲线上任一点的曲率及曲率半径。
2070

被折叠的 条评论
为什么被折叠?



