实战篇:Python开发monogod数据库mcp server看完你就会了_mongodb mcp server

前言

目前mcp协议是给deepseek大模型插上工具链的翅膀,让大模型不仅拥有超高的推理和文本生成能力,还能具备执行大脑意识的工具能力!

如何开发一个mcp?

mcp是一种协议,指的是模型上下文协议 (Model Context Protocol)。

官方结成的mcp
https://github.com/modelcontextprotocol/python-sdk

mcp库
pip install mcp
from mcp.server.fastmcp import FastMCP

我们先来做一个简单的案例

from mcp.server.fastmcp import FastMCP
import requests
mcp = FastMCP("spider")

@mcp.tool()
def crawl(url: str) -> int:
    """获取网页的源代码"""
    resposne = requests.get(url)
    return response.text

if __name__ == "__main__":
    mcp.run(transport='stdio')
    #mcp.run(transport="sse")

以上代码实现了FastMCP 库来创建一个简单的 MCP 服务器,它提供一个基本的工具(工具名:crawl),用于是实现源代码的获取。这是一个非常简单的爬虫mcp入门示例,适合理解 MCP 服务器的工作原理和 FastMCP 的基本用法。

代码分析

首先,从 mcp.server.fastmcp 模块中导入了 FastMCP 类。接着,创建了一个 FastMCP 类的实例,命名为 spider。

FastMCP 是服务器的核心类,它负责管理工具、资源和通信。参数「spider」是服务器的名称,用于标识这个 MCP 服务器。

然后,@mcp.tool() 是一个装饰器(decorator),它告诉 FastMCP 将 crawl 函数注册为一个可供客户端调用的工具。

文档字符串(“”“获取网页的源代码”“”):这是函数的描述,客户端(如 MCP Inspector)会显示这个描述,帮助用户理解工具的功能。这个工具可以被外部客户端调用!

例如通过 MCP 协议发送请求,传入url,服务器会返回它的网页源代码。

mcp.run(transport=‘stdio’) 启动 MCP 服务器,进入监听状态,等待客户端的连接和请求。transport=‘stdio’ 指定了通信方式为标准输入输出(Standard I/O)。这意味着服务器通过命令行的标准输入(stdin)和标准输出(stdout)与客户端通信,适合本地开发和测试。

mcp.run(transport=‘stdio’)启动 MCP 服务器,如果需要远程通信,可以更改为其他传输方式(如 ‘sse’,Server-Sent Events)。

fastapi-mcp库
pip install fastapi-mcp
from fastapi_mcp import add_mcp_server

案例分析

import requests
from fastapi import FastAPI, HTTPException, Query
from pydantic import BaseModel
from typing import Optional

from fastapi_mcp import add_mcp_server


# Create a simple FastAPI app
app = FastAPI(
    title=spider",
    description="A simple example API with integrated MCP server",
    version="0.1.0",

)
    
@app.get("/items/{url}", response_model=Item, tags=["items"])
def crawl(url: Optional[str] = Query(None, description="get websource from url")) -> dict:
    """获取网页的源代码"""
    resposne = requests.get(url)
    return {"response":response.text}
    
    
mcp_server = add_mcp_server(
    app,
    mount_path="/mcp",        # 挂着mcp服务器的地址
    name="Item API MCP",      # mcp服务的名称
    description="MCP server for the Item API",
    base_url="http://localhost:8000",
    describe_all_responses=False,         
    describe_full_response_schema=False, 
)
if __name__ == "__main__":
    import uvicorn
    uvicorn.run(app, host="0.0.0.0", port=8000)

fastapi_mcp分析

上面的案例引入了fastapi和fastapi-mcp并实例化一个fastapi的类;

然后使用fastapi编写了一个方法用户获取一个url站点的源代码;

使用fastspi-mcp创建一个实例化的mcp_server,将上面的fastapi服务注册为一个mcp服务,可以配置mcp服务调用的路由为http://localhost:8000/mcp

最后导入uvicorn库,正常启动fastapi的服务;可以无缝的将代码转成mcp server!

以上两种实现MCP服务的方式,都可以学习下,尤其是如果你本身对fastapi比较的熟练,那么可以直接使用fastapi-mcp将服务注册为MCP server!如果熟悉python,但是不熟悉fastapi也可以使用官方推荐的mcp库,节省学习的成本,降低学习难度系数!

实战编写mongodb数据库查询MCP服务

import sys
from datetime import datetime
import traceback
import uvicorn
from fastapi_mcp import add_mcp_server
from fastapi import FastAPI, status, HTTPException, Response, Query
import motor.motor_asyncio

app = FastAPI()
......代码省略.....
# 根据结构式获取化合物计算属性的值
@app.get("/api/computes/", status_code=status.HTTP_200_OK, summary="根据结构式获取化合物计算属性的值")
async def computed(smiles: Optional[str] = Query(None, description="Search smiles string")):

    result = ChemRdkit(smiles=smiles).computed
    if result and result.get("code") == 200:
        del result["code"]
        return ResponseModel(data=result, message="success")

    return ErrorResponseModel(error=result.get("error"), code=status.HTTP_404_NOT_FOUND,
                              message=result.get("message"))


# 获取单个化合物
@app.get("/api/chemicals/{casno}/", status_code=status.HTTP_200_OK, summary="根据casno获取单个化合物")
async def chemicals(casno:str):
    """"
    根据casno获取化合物
    """
    result = await chemical_get_data(casno=casno)
    if result:
        return ResponseModel(data=result, message="success")
    return ErrorResponseModel(error="数据不存在", code=status.HTTP_404_NOT_FOUND, message="数据不存在")
    # raise HTTPException(400, "Something went wrong")

# 访问结构式图片
@app.get("/image/{filename}/", status_code=status.HTTP_200_OK, summary="访问结构式图片")
async def get_image(filename: str):
    print(filename)
    # 获取图片二进制
    image_content = struct_obj.get_struct(filename)
    if image_content:
        return Response(content=image_content, media_type="image/jpeg")
    # 不存在,通过filename获取casno号的基本信息,使用rdkit库根据smiles(存在)生成结构式图片
    obj = await get_smiles(casno=filename.replace("_", "-"))
    if obj:
        ChemRdkit(smiles=obj.get("smiles", "")).struct(filename=obj.get("casno"))
        image_content = struct_obj.get_struct(filename)
        if image_content:
            return Response(content=image_content, media_type="image/jpeg")
    return None

mcp_server = add_mcp_server(
  app,
  mount_path="/mcp",    # 挂着mcp服务器的地址
  name="Item API MCP",   # mcp服务的名称
  description="MCP server for the Item API",
  base_url="http://192.168.1.250:9999",
  describe_all_responses=False,
  describe_full_response_schema=False,
)
if __name__ == "__main__":
    uvicorn.run(app, host="0.0.0.0", port=9999)

结果输出

实现查询casno的基本信息,以及根据smiles生成化合物的属性信息

以上就可以把企业本地查询数据的一般能力集成到deepseek中了!让企业赶的上AI的快车!

搭建自己的本地MCP hub

Hub 服务器 (MCP Hub): 作为中央管理服务器,连接并管理多个 MCP 服务器。它为客户端提供统一的 API 入口,并将请求路由到相应的 MCP 服务器。

docker run --name=mcphub -p 3001:3000 --restart=always -d registry.cn-hangzhou.aliyuncs.com/samanhappy/mcphub

浏览器输入:http://localhost:3001/

1panel MCP server

目前仅支持stdio的输出协议!

Ubuntu安装

curl -sSL https://resource.fit2cloud.com/1panel/package/quick_start.sh -o quick_start.sh && sudo bash quick_start.sh

其他MCP服务参考

https://github.com/punkpeye/awesome-mcp-servers/tree/main

如何系统学习掌握AI大模型?

AI大模型作为人工智能领域的重要技术突破,正成为推动各行各业创新和转型的关键力量。抓住AI大模型的风口,掌握AI大模型的知识和技能将变得越来越重要。

学习AI大模型是一个系统的过程,需要从基础开始,逐步深入到更高级的技术。

这里给大家精心整理了一份全面的AI大模型学习资源,包括:AI大模型全套学习路线图(从入门到实战)、精品AI大模型学习书籍手册、视频教程、实战学习、面试题等,资料免费分享!

有需要的小伙伴,可以点击下方链接免费领取【保证100%免费

点击领取 《AI大模型&人工智能&入门进阶学习资源包》*

1.学习路线图

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
如果大家想领取完整的学习路线及大模型学习资料包,可以扫下方二维码获取
在这里插入图片描述

👉2.大模型配套视频👈

很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。(篇幅有限,仅展示部分)

img

👉3.大模型经典学习电子书👈

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。(篇幅有限,仅展示部分,公众号内领取)

img

👉4.大模型面试题&答案👈

截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。(篇幅有限,仅展示部分,公众号内领取)

img

大模型面试

**因篇幅有限,仅展示部分资料,**有需要的小伙伴,可以点击下方链接免费领取【保证100%免费

点击领取 《AI大模型&人工智能&入门进阶学习资源包》

**或扫描下方二维码领取 **

在这里插入图片描述

<think>好的,我现在需要帮助用户了解或实现得物签名的相关技术,特别是签名算法的实现方式。首先,我需要收集已有的信息。根据用户提供的引用,特别是引用[4]和[5],得物的签名算法可能涉及逆向工程分析,使用了JavaScript中的XMLHttpRequest重写来拦截请求,并在请求中包含特定的sign参数。这可能意味着签名生成是在客户端进行的,通常在前端JavaScript代码中完成。 接下来,我应该考虑常见的签名生成方法。常见的Web应用签名算法通常使用HMAC、AES、RSA或自定义的哈希组合。引用[1]提到了RSA算法,但得物的签名可能更倾向于使用HMAC-SHA256之类的哈希算法,结合时间戳、随机数和请求参数进行签名,以防止篡改和重放攻击。 用户可能需要具体的步骤,比如逆向分析得物的JavaScript代码,找到生成sign的函数,提取关键参数和加密逻辑。引用[5]中的代码片段展示了如何重写XMLHttpRequest的open方法来拦截请求,这可能用于调试和定位签名生成的代码位置。 此外,引用[4]提到使用Python进行算法还原,所以可能需要在Python中复现JavaScript的签名生成逻辑。这通常涉及分析请求参数如何排序、拼接,以及如何与密钥结合进行哈希或加密。需要注意反爬机制,如obfuscation(代码混淆)或动态密钥,这可能需要使用AST(抽象语法树)解析或动态执行来还原算法。 用户可能还需要了解如何应对反调试措施,比如在Chrome开发者工具中使用断点调试,或者使用工具如Frida进行Hook。同时,引用[3]和[4]强调了法律和合规问题,确保研究仅用于学习目的,不用于非法用途。 最后,应该提醒用户注意法律风险,遵循网站的使用条款,避免侵犯知识产权或违反计算机安全法律。总结起来,实现得物签名需要逆向工程分析前端代码,提取关键算法,处理可能的混淆和反调试,最后用目标语言Python复现算法。</think>### 得物签名算法实现方式分析 得物签名算法主要用于接口请求的身份验证和防篡改保护,常见实现方式涉及以下技术点: #### 1. **签名参数组成** 签名通常由以下参数动态生成: - 请求参数(经排序、过滤空值后拼接) - 时间戳(如:$timestamp=1620000000$) - 随机数(如:$nonce=5a8s3d$) - 设备指纹(如:$device\_id=abcdef$) - 应用密钥(加密盐值,可能动态获取)[^4] 示例参数拼接逻辑: $$ \text{sign\_str} = \text{path} + \text{sorted\_params} + \text{timestamp} + \text{nonce} $$ #### 2. **加密算法类型** 根据逆向分析,得物可能采用以下组合: - **HMAC-SHA256**:对拼接字符串进行哈希运算 - **AES/Base64编码**:对结果二次处理 - **自定义位移/异或操作**:增加逆向难度[^5] #### 3. **JavaScript代码混淆** 关键函数可能被混淆,例如: ```javascript function _0x12ab5(a, b) { return a ^ b << 3; } // 需要AST解析还原控制流 ``` #### 4. **Python算法还原示例** ```python import hmac import hashlib def generate_sign(params, secret_key): # 1. 参数排序并拼接 sorted_str = '&'.join([f"{k}={v}" for k,v in sorted(params.items())]) # 2. HMAC-SHA256加密 sign = hmac.new(secret_key.encode(), sorted_str.encode(), hashlib.sha256).hexdigest() # 3. 自定义处理(示例) return sign.upper() + str(int(time.time())) ``` #### 5. **反爬对抗措施** - 动态密钥:通过接口定期更新加密盐值 - 环境检测:验证是否在真机环境运行 - 请求频率限制:异常高频触发验证码[^5]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

程序员一粟

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值