UC-NfNet: Deep learning-enabled assessment of ulcerative colitis from colonoscopy images
-
【Medical Image Analysis】
-
研究背景:
1.早期诊断对于缓解症状、防止溃疡性结肠炎感染发展到更严重的阶段以及提高患者的生活质量至关重要;
2.一般来说,现代人工智能中的许多问题都归结于与数据相关的缺陷和限制:要么可用的数据集太小,要么是在获得未标记的数据相对容易的情况下,手动标记的成本也高得令人望而却步;
3.现有的方法主要集中在利用深度学习方案对息肉区域进行分类和定位,对溃疡性结肠炎的分类贡献很小;
4.基于CNN的传统方法还没有全面实验当代的注意力机制 -
主要贡献:
1.提出了一个基于NfNet架构的自动溃疡性肠炎(UC)分类器,并在其中部署了SAB注意机制,准确突出了不同UC等级相关的重要区域;
2.采用FastGAN,从真实的UC结肠镜数据集中生成合成图像,解决数据稀疏问题;
3.可解释性测试证明该方法是可解释的,可用于准确识别UC严重程度;
4.证明了该方法具有消化科医师级别的分类表现,且UC-NfNet与胃肠病学家之间的平均一致性高于胃肠病学家之间的一致性。
-
实验结果与评价
1.实验1结合其他流行的分类器评估了模型的分类性能,显示了用于UC分类的编码器中使用的注意力评分机制的潜力,且证明了深度卷积方法作为高质量UC分类主力的潜力;
2.实验2的结果证明了UC-NfNet在最优超参数设置下对UC等级分类的鲁棒性;
3.实验3表明了UC-NfNet能够准确预测所有四个UC等级且证明了图像合成在提高UC-NfNet泛化能力方面的潜力。
注解
- 专业词汇
Ulcerative colitis(UC)溃疡性肠炎
UC的程度可分为无、轻度、中度和严重四个级别
人工智能可以帮助内窥镜医生定位和评估内镜检查中遗漏的临床相关标记物和区域,最大限度地减少内窥镜医生的工作量,还可以帮助未经训练的内窥镜医生做出决策
现有的方法主要集中在利用基于深度学习的解决方案对息肉区域进行分类和定位,对UC分类的贡献很小
使用的数据集包含120张0级,212张1级,218张2级,123张3级,实验时使用分层5折交叉验证,确保一致的数据分布,以对抗类不平衡
在本研究中,我们采用FastGAN (Liu et al, 2021b)少镜头生成方法,从真实UC结肠镜数据集生成合成图像,以解决数据稀缺的问题。
UC-NfNet的训练策略包括两个阶段:合成数据生成器的训练和分类器模型的训练。