Lipnet的学习理解
原文链接
通读完这篇文章,感觉并没有什么很大的创新点,所以我们直接看网络和代码吧。
LipNet架构。
一个T帧序列作为输入(这个T的取值一般是你输入数据的最大序列长度的2倍加1,也就是 =2L+1),由3层STCNN(Spatiotemporal convolutional neural networks时空卷积神经网络)处理,每层后面是一个空间最大池化层。对提取的特征进行时间上采样,用Bi-LSTM(也可以用GRU速度更快点,精度也没降低,代码里面就是用的GRU)进行处理;LSTM输出的每个时间步长由一个两层前馈网络和一个softmax进行处理。该端到端模型采用CTC(关于CTC的详细解读见我的这篇博客)进行训练。
网络看完了,接下来就看代码吧,代码也比较简单,可以说一目了然!!!代码有生疏的地方均有详细注释
import torch
import torch.nn as nn
import torch.nn.init as init
import torch.nn.functional as F
import math
import numpy as np
class LipNet(torch.nn.Module):
def __init__(self, dropout_p=0.5):
super(LipNet, self).__init__()
'''
conv = nn.Conv3d(in_channels=2,
out_channels=6,
kernel_size=(2,1,1),
stride=1,
padding=0,
dilation=1,
groups=1,
bias=False)
max_pool3d(
input,
ksize,
strides,
padding,
data_format='NDHWC',
name=None
)
'''
self.conv1 = nn.Conv3d(3, 32, (3, 5, 5), (1, 2, 2), (1, 2, 2))
self.pool1 = nn.MaxPool3d((1, 2, 2), (1, 2, 2))
self.conv2 = nn.Conv3d(32, 64, (3, 5, 5), (1, 1, 1), (1, 2, 2))
self.pool2 = nn.MaxPool3d((1, 2, 2), (1, 2, 2))
self.conv3 = nn.Conv3d(64, 96, (3, 3, 3), (1, 1, 1), (1, 1, 1))
self.pool3 = nn.MaxPool3d((1, 2, 2), (1, 2, 2))
self.gru1 = nn.GRU(96*4*8, 256, 1, bidirectional=True)
self.gru2 = nn.GRU(512, 256, 1, bidirectional=True)
self.FC = nn.Linear(512, 27+1)
self.dropout_p = dropout_p
self.relu = nn.ReLU(inplace=True)
self.dropout = nn.Dropout(self.dropout_p)
self.dropout3d = nn.Dropout3d(self.dropout_p)
self._init()
def _init(self):
#权重初始化[可以看我的另一篇博客](https://blog.csdn.net/justsolow/article/details/105137595)
init.kaiming_normal_(self.conv1.weight, nonlinearity='relu')
init.constant_(self.conv1.bias, 0)
init.kaiming_normal_(self.conv2.weight, nonlinearity='relu')
init.constant_(self.conv2.bias, 0)
init.kaiming_normal_(self.conv3.weight, nonlinearity='relu')
init.constant_(self.conv3.bias, 0)
init.kaiming_normal_(self.FC.weight, nonlinearity='sigmoid')
init.constant_(self.FC.bias, 0)
'''
# 正交矩阵 - (semi)orthogonal matrix
# From - Exact solutions to the nonlinear dynamics of learning in deep linear neural networks - Saxe 2013
# torch.nn.init.orthogonal_(tensor, gain=1)
nn.init.orthogonal_(w)
# tensor([[ 0.5786, -0.5642, -0.5890],
# [-0.7517, -0.0886, -0.6536]])
# 均匀分布 - u(a,b)
# torch.nn.init.uniform_(tensor, a=0, b=1)
nn.init.uniform_(w)
# tensor([[ 0.0578, 0.3402, 0.5034],
# [ 0.7865, 0.7280, 0.6269]])
'''
for m in (self.gru1, self.gru2):
stdv = math.sqrt(2 / (96 * 3 * 6 + 256))
for i in range(0, 256 * 3, 256):
init.uniform_(m.weight_ih_l0[i: i + 256],
-math.sqrt(3) * stdv, math.sqrt(3) * stdv)
init.orthogonal_(m.weight_hh_l0[i: i + 256])
init.constant_(m.bias_ih_l0[i: i + 256], 0)
init.uniform_(m.weight_ih_l0_reverse[i: i + 256],
-math.sqrt(3) * stdv, math.sqrt(3) * stdv)
init.orthogonal_(m.weight_hh_l0_reverse[i: i + 256])
init.constant_(m.bias_ih_l0_reverse[i: i + 256], 0)
def forward(self, x):
x = self.conv1(x)
x = self.relu(x)
x = self.dropout3d(x)
x = self.pool1(x)
x = self.conv2(x)
x = self.relu(x)
x = self.dropout3d(x)
x = self.pool2(x)
x = self.conv3(x)
x = self.relu(x)
x = self.dropout3d(x)
x = self.pool3(x)
# (B, C, T, H, W)->(T, B, C, H, W)
x = x.permute(2, 0, 1, 3, 4).contiguous()
# (B, C, T, H, W)->(T, B, C*H*W) 这里转换的原因是由于CTC对输入有要求。必须是(T, B, C*H*W)
x = x.view(x.size(0), x.size(1), -1)
self.gru1.flatten_parameters()
self.gru2.flatten_parameters()
x, h = self.gru1(x)
x = self.dropout(x)
x, h = self.gru2(x)
x = self.dropout(x)
x = self.FC(x)
x = x.permute(1, 0, 2).contiguous()
return x