飞桨论文复现之U-GAT-IT

U-GAT-IT是一种无监督图像到图像转换方法,利用注意力机制和AdaLIN(自适应图层实例标准化)进行几何形状和纹理变化的灵活控制。模型包括生成器和判别器,其中注意力模块帮助关注关键区域,增强转换效果。通过Adversarial、Cycle、Identity和CAM损失函数优化,适用于大规模形状变化的图像转换任务。
摘要由CSDN通过智能技术生成

U-GAT-IT

这是一篇对U-GAT-IT论文的个人解读U-GAT-IT飞桨论文复现课程

ABSTRACT

提出了一种新的无监督图像到图像转换方法,它以端到端的方式结合了新的注意力模块和新的可学习的归一化功能.注意模块引导模型基于辅助分类器获得的关注图来关注区分源域和目标域的更重要区域.与先前基于注意力的方法不同,这些方法无法处理域之间的几何变化,新提出的模型可以转换存在大幅度变化的图像.此外,新的AdaLIN(自适应图层实例标准化)功能可帮助注意力引导模型根据数据集通过学习参数灵活地控制形状和纹理的变化量.实验结果表明,与现有的具有固定网络架构和超参数的现有模型相比,该方法具有优越性.

INTRODUCTION

图像到图像转换旨在学习一个在两个不同域里映射图像的函数, 其应用包括image inpainting(图像修复), super resolution(超分辨率), colorization(图像着色)和style transfer(风格迁移)

近年来围绕GAN实现图像转换的研究非常多,比如CycleGAN, UNIT, MUNIT, DRIT, FUNIT, SPADE.但这些方法仍有性能上的差异,具体取决于域间形状和纹理的变化量上.比如,它们可以很好完成纹理的映射但对于形状变化较大的时候就显得力不从心.因此通常需要一些预处理操作,图像裁剪和对齐来限制数据的分布.U-GAT-IT正是为了实现这种多任务下鲁棒性能设计的.

U-GAT-IT的贡
U-GAT-IT是一种基于对抗生成网络(GAN)的图像翻译模型,它可以将一种风格的图像转换为另一种风格的图像。该模型的核心是利用生成器和判别器两个网络进行对抗训练。其中,生成器负责将输入图像转换为目标风格的图像,判别器则负责判断生成器生成的图像是否真实。 U-GAT-IT的损失函数主要由三部分组成: 1. 重构损失 重构损失用于保证生成器生成的图像与输入图像之间的相似性。具体来说,它是由输入图像和生成器生成的图像之间的L1范数差异和目标风格图像和生成器生成的目标风格图像之间的L1范数差异构成。 2. 判别器损失 判别器损失用于训练判别器,使其能够准确地区分生成器生成的图像和真实的目标风格图像。具体来说,它是由生成器生成的图像和真实目标风格图像之间的L1范数差异以及生成器生成的图像和目标风格图像之间的判别器损失构成。 3. 生成器损失 生成器损失用于训练生成器,使其能够生成更加逼真的目标风格图像。具体来说,它是由生成器生成的图像被判别器判定为真实图像的概率的负对数和生成器生成的目标风格图像和目标风格图像之间的L1范数差异构成。 以上三部分损失函数会同时作用于生成器和判别器,通过对抗训练,生成器会不断提高生成的图像的质量,判别器会不断提高判别生成的图像和真实图像的准确性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值