CUDA
查看cuda版本
nvidia-smi命令是看图显驱动的,nvcc是看cuda驱动版本的。
nvidia-smi
nvcc -V
nvcc -V和nvidia-smi出现的cuda版本不同
conda环境下使用nvcc -V报错nvcc: command not found的一种解决方法
介绍
CUDA有两个主要的API:runtime API(nvcc -V 显示的cuda)和driver API(nivdia-smi中显示的cuda),两者都有相应的版本。
用于支持driver API的必要文件(如libcuda.so)是由GPU driver installer安装的。nvidia-smi就属于这一类API。
用于支持runtime API的必要文件(如libcudart.so以及nvcc)是由CUDA Toolkit installer安装的。(CUDA Toolkit Installer有时可能会集成了GPU driver Installer)。nvcc是与CUDA Toolkit一起安装的CUDA compiler-driver tool,它只知道它自身build 时的CUDA runtime版本。它不知道安装了什么版本的GPU driver,甚至不知道是否安装了GPU driver。
在安装CUDA 时候会安装3大组件:
- NVIDIA driver是用来控制 GPU 硬件;
- toolkit 里面包括nvcc编译器等;
- samples或者说SDK 里面包括很多样例程序包括查询设备、带宽测试等等。
安装nvcc
进入conda环境:conda install -c nvidia cuda-nvcc
cudnn版本
查看cudnn版本
进入目录查看cudnn_version.h文件
一般放在:CUDA\v10.2\include\cudnn_version.h
查看gpu型号
输入 nvidia-smi -L 命令, 可以列出所有 NVIDIA 显卡相关型号信息
输入 nvidia-smi -l 1 命令, 可以显示 NVIDIA 显卡基本信息和相关进程占用显存情况,且每隔 1s 刷新一次
环境变量
export CUDA_HOME=/usr/local/cuda-10.0
export PATH=${CUDA_HOME}/bin:$PATH
export LD_LIBRARY_PATH=${CUDA_HOME}/lib64:$LD_LIBRARY_PATH
other
CUDA安装路径详解
cuDNN概述 :NVIDIACUDA®深度神经网络库(cuDNN)是GPU加速的用于深度神经网络的原语库。cuDNN为标准例程提供了高度优化的实现,例如向前和向后卷积,池化,规范化和激活层。
cuda 安装包
cudnn安装包
安装过程 https://zhuanlan.zhihu.com/p/336796040
环境安装
Pytorch(GPU)配环境原理:cuda+cudnn+pytorch
pytorch
进入下载pytorch的网站
cu115代表CUDA11.5版本,cp38代表python的版本
https://blog.csdn.net/weixin_51756104/article/details/124398722
conda 安装
https://anaconda.org/main/cudnn
cudnn 8.2.1
conda install -c anaconda cudnn
Conda和conda-forge都是 Python 包管理器。
conda-forge是conda源中的一个分支 anaconda是python包管理器,默认会考虑不同python包版本的兼容性,conda是这个管理器提供的命令行工具
目前有一个2016年发起的、由社区赞助、由社区主导的工作,即Conda-Forge。它使得conda的打包和分发完全开源。
https://blog.csdn.net/Mr_yangsc/article/details/126315713
https://developer.nvidia.com/cuda-toolkit-archive
https://www.python100.com/html/96574.html
https://blog.csdn.net/GREEN_cq/article/details/116086292?spm=1001.2014.3001.5501