在无穷处的极限

在无穷处的极限

一个函数在 x x x 趋于某一点时可能存在极限,例如 x x x 趋近于 a a a 的时候,在另外的一些函数中还有可能会在趋近于无穷 ∞ \infty 时存在极限( − ∞ -\infty + ∞ +\infty +),这些类型的函数一样非常常见。

1. 定义

之前文章的例子都是在接近一点 x = a x=a x=a 时的函数行为,在函数趋近于 ∞ \infty 情况下的极限,重要的是要理解当 x x x 变得非常大时,一个函数的行为如何。用更简便的语言来描述就是:我们感兴趣的是,研究当变量 x x x 趋于 ∞ \infty 时函数的行为,并且想写出

lim ⁡ x → ∞ f ( x ) = L \lim_{x \rightarrow \infty}f(x)=L xlimf(x)=L

并以此表示,当 x x x 很大的时候, f ( x ) f(x) f(x) 变得非常接近于值 L L L,并保持这种接近的状态。

另外, x x x 也可以趋近于 − ∞ -\infty ,此时就可以写出如下式子

lim ⁡ x → − ∞ f ( x ) = L \lim_{x \rightarrow -\infty} f(x)=L xlimf(x)=L

它表示当 x x x 变得越来越负 (或者更确切地说, − x −x x 变得越来越大时,函数 f ( x ) f(x) f(x) 会变得非常接近于值 L L L,并保持接近的状态。

2. 渐近线

渐近线是指:曲线上一点 M M M 沿曲线无限远离原点或无限接近间断点时,如果 M M M 到一条直线的距离无限趋近于零,那么这条直线称为这条曲线的渐近线。可分为垂直渐近线,水平渐近线和斜渐近线。

请添加图片描述

(1) 例如上图反比例函数的渐近线就是 X X X 轴和 Y Y Y 轴,当 x x x 趋近于 ∞ \infty 时极限为 0 0 0,当 x x x 趋近于 0 0 0 时极限为 ∞ \infty

(2) f f f x = a x=a x=a 处有一条垂直渐近线说的是, lim ⁡ x → a + f ( x ) \lim_{x \rightarrow a+}f(x) limxa+f(x) lim ⁡ x → a − f ( x ) \lim_{x \rightarrow a−}f(x) limxaf(x),其中至少有一个极限是 ∞ \infty − ∞ −\infty ,例如上图中渐近线 x = 0 x=0 x=0 时极限为 ∞ \infty

后面需要使用渐近线的一些特性得到一些关于极限结论,所以这里引出一下关于渐近线的定义,实际上渐近线和这里的内容无关,只是使用到了,在这里作出一些解释。

3. 结论

如果函数 y = f ( x ) y=f(x) y=f(x) 的图像有一条左侧或右侧水平渐近线,如果愿意,你也可以把这些转化为定义(结论):

(1) f f f y = L y=L y=L 处有一条右侧水平渐近线意味着 lim ⁡ x → ∞ f ( x ) = L \lim_{x \rightarrow \infty}f (x)=L limxf(x)=L
(2) f f f y = M y=M y=M 处有一条左侧水平渐近线意味着 lim ⁡ x → − ∞ f ( x ) = M \lim_{x \rightarrow −\infty}f(x)=M limxf(x)=M

(3) 不是所有函数有渐近线,像 y = x 2 y=x^2 y=x2 这样的函数没有任何水平渐近线,因为当 x x x 变得越来越大时, y y y 值只会无限上升。用符号表示我们可以写作 lim ⁡ x → ∞ x 2 = ∞ \lim_{x \rightarrow \infty}x2=\infty limxx2=

4. 渐近线的两个常见误解

第一个误解

首先,一个函数不一定要在左右两边有相同的水平渐近线,在 f ( x ) = 1 / x f(x)=1/x f(x)=1/x 的图像中,左右两侧都有 y = 0 y=0 y=0 这条水平渐近线,也就是说

lim ⁡ x → ∞ 1 x = 0   和  lim ⁡ x → − ∞ − 1 x = 0 \lim_{x \rightarrow \infty} \frac{1}{x}=0 \ \ 和 \ \lim_{x \rightarrow -\infty} -\frac{1}{x}=0 xlimx1=0   xlimx1=0

考虑图 3-10 中 y = t a n − 1 ( x ) y=tan^{−1}(x) y=tan1(x) 的图像,如下

请添加图片描述

此函数在 y = π 2 y=\frac{\pi}{2} y=2π 处有一条右侧水平渐近线, 在 y = − π 2 y=−\frac{\pi}{2} y=2π 处有一条左侧水平渐近线,它们是不同的。可以用极限来表示:

lim ⁡ x → ∞ t a n − 1 x = π 2   和  lim ⁡ x → − ∞ t a n − 1 x = − π 2 \lim_{x \rightarrow \infty} tan^{-1}{x}=\frac{\pi}{2} \ \ 和 \ \lim_{x \rightarrow -\infty} tan^{-1}{x}=-\frac{\pi}{2} xlimtan1x=2π   xlimtan1x=2π

因此,一个函数的确可以有不同的右侧和左侧水平渐近线,但最多只能有两条水平
渐近线(一条在右侧,另一条在左侧)它也有可能一条都没有,或者只有一条。例
y = 2 x y=2^{x} y=2x 有一条左侧水平渐近线(就是 y = 0 y=0 y=0 这条,也就是 X X X 轴),但没有右侧水平渐近线(因为右边无线变大,没有趋近一个值,所以没有渐近线)。

请添加图片描述

第二个误解

另外一个常见误解是,一个函数不可能和它的渐近线相交。大家都认为渐近线是一条函数越来越接近但永远不会相交的直线,但是这并不正确,这说的是斜渐近线。水平渐近线不这么定义,水平渐近线可以和函数相交。

比如定义为 f ( x ) = s i n ( x ) x f(x)=\frac{sin(x)}{x} f(x)=xsin(x) 的函数 f f f,这里我们只关心当 x x x 是很大的正数时的函数行为。

请添加图片描述

s i n ( x ) sin(x) sin(x) 的值在 − 1 −1 1 1 1 1 之间振荡(不是只 − 1 -1 1 1 1 1 两个值,而是 − 1 -1 1 1 1 1 之间的任意值), 因此 s i n ( x ) x \frac{sin(x)}{x} xsin(x) 的值相当于在 − 1 x −\frac{1}{x} x1 1 x \frac{1}{x} x1 之间振荡,那么随着 x x x 趋近于 ∞ \infty − 1 x −\frac{1}{x} x1 1 x \frac{1}{x} x1 趋近于 0 0 0,这意味着 f ( x ) = s i n ( x ) x f(x)=\frac{sin(x)}{x} f(x)=xsin(x) 的渐近线是 y = 0 y=0 y=0 x x x 轴是 f f f 的水平渐近线,尽管 y = f ( x ) y=f(x) y=f(x) 的图像与 x x x 轴一次又一次地相交。

  • 4
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值