极限两边夹定理

极限两边夹定理

1. 定义

两边夹定理 (又称作夹逼定理) 说的是,如果一个函数 f f f 被夹在函数 g g g 和函数 h h h
间,当 x → a x \rightarrow a xa 时,这两个函数 g g g h h h 都收敛于同一个极限 L L L,那么当 x → a x \rightarrow a xa 时, f f f 也收敛于极限 L L L

2. 深入理解

以下是对该定理的一个更精确的描述。假设对于所有的在 a a a 附近的 x x x, 我们
都有 g ( x ) ≤ f ( x ) ≤ h ( x ) g(x) \leq f(x) \leq h(x) g(x)f(x)h(x),即 f ( x ) f(x) f(x) 被夹在 g ( x ) g(x) g(x) h ( x ) h(x) h(x) 之间。此外,我们假设 lim ⁡ x → a g ( x ) = L \lim_{x \rightarrow a} g(x)=L limxag(x)=L lim ⁡ x → a h ( x ) = L \lim_{x \rightarrow a} h(x)=L limxah(x)=L。那么我们可以得出结论: lim ⁡ x → a f ( x ) = L \lim_{x \rightarrow a} f(x)=L limxaf(x)=L,即当 x → a x \rightarrow a xa 时,所有三个函数都有相同的极限。

请添加图片描述

在图像中用实线表示的函数 f f f 被夹在其他两个函数 g g g h h h 之间,当 x → a x \rightarrow a xa 时,
f ( x ) f(x) f(x) 的极限被迫趋于 L L L

3. 实例

对于单侧极限,我们也有一个类似版本的三明治定理,只是这时不等式 g ( x ) ≤ f ( x ) ≤ h ( x ) g(x) \leq f(x) \leq h(x) g(x)f(x)h(x) 仅在 a a a 的一侧成立,而且还是我们关心的那一侧。例如,

lim ⁡ x → 0 + x ⋅ s i n ( 1 x ) \lim_{x \rightarrow 0+} x \cdot sin(\frac{1}{x}) x0+limxsin(x1)

y = x s i n ( 1 x ) y=xsin(\frac{1}{x}) y=xsin(x1) 的图像和 y = s i n ( 1 x ) y=sin(\frac{1}{x}) y=sin(x1) 的图像很相似,只是现在,前面有
一个 x x x 致使函数夹在 y = x y=x y=x y = − x y =−x y=x 之间。下图是 x x x 0 0 0 0.3 0.3 0.3 之间的
函数图像。

请添加图片描述

从图中可以看到,当 x x x 趋于 0 0 0 时,函数仍旧有激烈的振荡,但现在它们被 y = x y=x y=x y = − x y =−x y=x 的图像抑制。

这个例子刚好可以应用两边夹定理,函数 g g g 是下方的包络线 y = − x y=−x y=x,而函数 h h h 是上方的包络线 y = x y=x y=x。我们需要证明对于 x > 0 x > 0 x>0,有 g ( x ) ≤ f ( x ) ≤ h ( x ) g(x) \leq f(x) \leq h(x) g(x)f(x)h(x),由于只需要 f ( x ) f(x) f(x) x = 0 x=0 x=0 处的右极限,所以我们不关心 x < 0 x<0 x<0 时的情况。

那么当 x > 0 x>0 x>0 时,要怎样证明 g ( x ) ≤ f ( x ) ≤ h ( x ) g(x) \leq f(x) \leq h(x) g(x)f(x)h(x) 呢?办法是将函数的值域代入表达式中, ( 1 x ) (\frac{1}{x}) (x1) 的正弦都处于 − 1 −1 1 1 1 1 之间 ,代入

− 1 ≤ s i n ( 1 x ) ≤ 1 -1 \leq sin(\frac{1}{x}) \leq 1 1sin(x1)1

现在用 x x x 乘以这个不等式,即将 x x x 代入到表达式,由于 x > 0 x>0 x>0,不会改变表达式的符号,得到

− x ≤ s i n ( 1 x ) ≤ x -x \leq sin(\frac{1}{x}) \leq x xsin(x1)x

而上式这正是我们需要的两边夹定理表达式 g ( x ) ≤ f ( x ) ≤ h ( x ) g(x) \leq f(x) \leq h(x) g(x)f(x)h(x) 最后,注意到

lim ⁡ x → 0 + g ( x ) = lim ⁡ x → 0 + ( − x ) = 0   及  lim ⁡ x → 0 + h ( x ) = lim ⁡ x → 0 + x = 0 \lim_{x \rightarrow 0+}g(x)=\lim_{x \rightarrow 0+}(−x)=0 \ \ 及 \ \lim_{x \rightarrow 0+}h(x)=\lim_{x \rightarrow 0+}x=0 x0+limg(x)=x0+lim(x)=0   x0+limh(x)=x0+limx=0

因此,由于当 x → 0 + x \rightarrow 0+ x0+ 时,两边夹的 − x -x x x x x 的值收敛于同一个数 0 0 0(即函数 g ( x ) g(x) g(x) h ( x ) h(x) h(x) 的值收敛于同一个数 0 0 0),所有 f ( x ) f(x) f(x) 也一样。也就是说,使用两边夹定理证明了以下极限

lim ⁡ x → 0 + x ⋅ s i n ( 1 x ) = 0 \lim_{x \rightarrow 0+} x \cdot sin(\frac{1}{x})=0 x0+limxsin(x1)=0

要记住,如果前面没有因子 x x x,上式显然不成立,因为当 x → 0 + x \rightarrow 0+ x0+ 时, s i n ( 1 x ) sin(\frac{1}{x}) sin(x1) 该函数值发生激烈震荡,不趋于任何数,所以 s i n ( 1 x ) sin (\frac{1}{x}) sin(x1) 的极限不存在。

  • 6
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
初值定理和终值定理都是微积分中的基本定理,它们是解决微积分问题的重要方法。 初值定理:设函数f(x)在区间[a,b]上连续,x0∈[a,b],则有:$$ \lim_{x \to x_0}f(x)=f(x_0) $$ 这个定理告诉我们,在一个区间上,如果一个函数在某一点x0处连续,那么在x0点的极限值等于函数在x0点的函数值f(x0)。 终值定理:设函数f(x)在区间[a,b]上连续,且在(a,b)内具有导数,则有:$$ \int_a^bf'(x)dx=f(b)-f(a) $$ 这个定理告诉我们,如果一个函数在某个区间上具有导数,那么在该区间上的积分等于函数在该区间的两个端点处的函数值之差。 现在我们来推导一下终值定理: 设F(x)是f(x)在区间[a,x]上的一个原函数,则有: $$ \frac{d}{dx}F(x)=f(x) $$ 对两边同时积分: $$ \int_a^b\frac{d}{dx}F(x)dx=\int_a^bf(x)dx $$ 根据牛顿-莱布尼茨公式,上式左边等于F(b)-F(a),即: $$ \int_a^bf(x)dx=F(b)-F(a) $$ 所以终值定理得证。 初值定理的推导可以利用终值定理推出,具体过程如下: 设F(x)是f(x)在区间[a,x]上的一个原函数,则有: $$ \frac{d}{dx}F(x)=f(x) $$ 对两边同时积分得到: $$ F(x)-F(x_0)=\int_{x_0}^xf(t)dt $$ 当x趋近于x0时,有: $$ \lim_{x \to x_0}(F(x)-F(x_0))=\lim_{x \to x_0}\int_{x_0}^xf(t)dt $$ 根据终值定理: $$ \lim_{x \to x_0}\int_{x_0}^xf(t)dt=f(x_0)-f(x_0)=0 $$ 所以有: $$ \lim_{x \to x_0}(F(x)-F(x_0))=0 $$ 即: $$ \lim_{x \to x_0}F(x)=F(x_0) $$ 因为F(x)是f(x)在区间[a,x]上的一个原函数,所以: $$ \lim_{x \to x_0}F(x)=\lim_{x \to x_0}\int_a^xf(t)dt $$ 根据极限的唯一性,可得: $$ \lim_{x \to x_0}\int_a^xf(t)dt=\int_a^{x_0}f(t)dt $$ 所以初值定理得证。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值