英伟达GPU显卡性能对比

本文介绍了GPU系列的不同类型,如Quadro、GeForce和Tesla,着重讲解了CUDACore、TensorCore和RTCore的功能与应用,特别是它们在深度学习和光线追踪中的优势,并提到了A100和H100等高端芯片。同时,还涉及了如何搭建深度学习所需的硬件和软件环境。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

GPU系列介绍

  • Quadro类型: Quadro系列显卡一般用于特定行业,比如设计、建筑等,图像处理专业显卡,比如CAD、Maya等软件。

  • GeForce类型: 这个系列显卡官方定位是消费级,常用来打游戏。但是它在深度学习上的表现也非常不错,很多人用来做推理、训练,单张卡的性能跟深度学习专业卡Tesla系列比起来其实差不太多,但是性价比却高很多。

  • Tesla类型: Tesla系列显卡定位并行计算,一般用于数据中心,具体点,比如用于深度学习,做训练、推理等。Tesla系列显卡针对GPU集群做了优化,像那种4卡、8卡、甚至16卡服务器,Tesla多块显卡合起来的性能不会受>很大影响,但是Geforce这种游戏卡性能损失严重,这也是Tesla主推并行计算的优势之一。

Quadro类型分为如下几个常见系列:

  • NVIDIA RTX Series系列: RTX A2000、RTX A4000、RTX A4500、RTX A5000、RTX A6000
  • Quadro RTX Series系列: RTX 3000、RTX 4000、RTX 5000、RTX 6000、RTX 8000

GeForce类型分为如下几个常见系列:

  • Geforce 10系列: GTX 1050、GTX 1050Ti、GTX 1060、GTX 1070、GTX 1070Ti、GTX 1080、GTX 1080Ti
  • Geforce 16系列:GTX 1650、GTX 1650 Super、GTX 1660、GTX 1660 Super、GTX 1660Ti
  • Geforce 20系列:RTX 2060、RTX 2060 Super、RTX 2070、RTX 2070 Super、RTX 2080、RTX 2080 Super、RTX 2080Ti
  • Geforce 30系列: RTX 3050、RTX 3060、RTX 3060Ti、RTX 3070、RTX 3070Ti、RTX 3080、RTX 3080Ti、RTX 3090 RTX 3090Ti

Tesla类型分为如下几个常见系列:

  • A-Series系列: A10、A16、A30、A40、A100
  • T-Series系列: T4
  • V-Series系列: V100
  • P-Series系列: P4、P6、P40、P100
  • K-Series系列: K8、K10、K20c、K20s、K20m、K20Xm、K40t、K40st、K40s、K40m、K40c、K520、K80

在这里插入图片描述在这里插入图片描述

在这里插入图片描述在这里插入图片描述
在这里插入图片描述

在这里插入图片描述在这里插入图片描述

CUDA Core、Tensor Core 和 RT Core

通用的 GPU 中包含三种核心,分别是 CUDA Core、Tensor Core 和 RT Core,这三种核心各自具有不同的特性和功能。

  • CUDA Core:CUDA Core 是用于通用并行计算任务的计算核心,可以执行单精度和双精度浮点运算,以及整数运算。它在处理广泛的并行计算任务方面非常高效。
  • Tensor Core:Tensor Core 是针对深度学习和 AI 工作负载而设计的专用核心,可以实现混合精度计算并加速矩阵运算,尤其擅长处理半精度(FP16)和全精度(FP32)的矩阵乘法和累加操作。Tensor Core 在加速深度学习训练和推理中发挥着重要作用。
  • RT Core:RT Core 是专门用于光线追踪处理的核心,能够高速进行光线和声音的渲染,对于图形渲染和光线追踪等任务具有重要意义。

其它(TODO)

少数公司从英伟达那里获得了2万多颗A100或H100 GPU。H100是英伟达最新旗舰AI芯片,价值4万美元。它的前一代是A100芯片,价值1万美元。

  • RTX 3080
  • RTX 2080Ti
    RTX 3080,两倍于RTX 2080Ti

搭建深度学习

硬件:Intel Core i9-12900KF + 64GB + 512GB NvME + Nvidia 3080Ti显卡
操作系统:Microsoft Windows 11 Pro X64 简体中文版
针对Nvidia 3080Ti,需要安装配置 Nvidia 的机器学习环境:显卡驱动 + CUDA +cuDNN。具体

### 不同 Nvidia 显卡上 DeepSeek 运行速度分析 对于不同 Nvidia 显卡运行 DeepSeek 的性能对比,主要取决于显卡的核心架构、内存带宽以及专用于加速深度学习任务的 Tensor 核心数量等因素。 #### V100 和 P100 对比 V100 基于 NVIDIA Volta 架构,内置了强大的 Tensor 核心,能够专门处理深度学习人工智能的计算任务,提供更高的内存带宽和更快的数据处理速度[^1]。相比之下,P100 虽然也支持深度学习应用,但在 Tensor 核心的数量和支持程度上不如 V100 那么强大。因此,在执行像 DeepSeek 这样的大型模型推理时,预计 V100 将表现出更优的速度表现。 #### A100 与 V100 对比 A100 是继 V100 之后推出的更新一代产品,采用了 Ampere 架构,不仅继承和发展了前代产品的优势特性,还进一步提升了整体效能。特别是在针对 Transformer 类型的大规模预训练语言模型方面,由于具备更大的共享缓存空间及优化后的稀疏矩阵运算能力,A100 可以为 DeepSeek 提供更为高效的并行化计算环境,理论上可以实现更好的吞吐率和更低延迟的表现。 #### MIG 技术的影响 H200 GPU 所拥有的多实例 GPU (MIG) 功能可以在不影响单个工作负载质量的前提下允许多个独立的工作流同时运行在同一物理设备之上,这对于那些希望最大化利用现有硬件资源来部署多个小型或中型规模版本 DeepSeek 实例的企业来说是非常有价值的改进措施[^2]。然而需要注意的是,当涉及到具体某个特定大小(如 DeepSeek-7B 或者更大)的单一模型加载测试场景下,这种分割方式可能会因为减少了可用的整体算力而略微降低绝对峰值性能指标。 ```python import torch from transformers import AutoModelForCausalLM, AutoTokenizer def benchmark(model_name='DeepSeek', device='cuda'): tokenizer = AutoTokenizer.from_pretrained(f"{model_name}") model = AutoModelForCausalLM.from_pretrained(f"{model_name}").to(device) input_text = "Once upon a time" inputs = tokenizer(input_text, return_tensors="pt").to(device) start_time = torch.cuda.Event(enable_timing=True) end_time = torch.cuda.Event(enable_timing=True) with torch.no_grad(): start_time.record() outputs = model.generate(**inputs, max_length=50) end_time.record() torch.cuda.synchronize() elapsed_time_ms = start_time.elapsed_time(end_time) print(f"Inference Time on {device}: {elapsed_time_ms:.2f} ms") benchmark('DeepSeek-7B', 'cuda:0') # Replace with actual available devices like cuda:0 for V100/A100 etc. ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

北极象

如果觉得对您有帮助,鼓励一下

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值