组合数——走到(x,y)

你位置平面直角坐标系原点(0,0)处,想去一点(x,y)。每次行动只能沿x轴正方向或者y轴正方向移动, 而且每次只能移动一个单位长度。
求从(0,0)到(x,y)有多少种不同的路径,若其不能到达(x,y) 则输出-1。

输入格式:

一行两个整数x,y。由空格隔开。 |x|≤2000,|y|≤2000

输出格式:

一行一个整数sum,表示从(0,0)到(x,y)不同的路径数,由于该数 可能过大,所以你只需要输出其对 998244353
取模的结果即可。 若不能到达(x,y)则输出-1.

输入样例:

1 1

输出样例:

2

首先:没有规定x,y大小关系。
先分情况讨论

如果xy均小于零 -1

——本题:不是卡特兰数(卡特兰数:只有两个动作,且在进行第 K 次操作二前必须先进行至少 K 次操作一)
eg(20,2)
自己理解:
总共需要走22步,在这22步中,随便选择2步为向上——从22个中抽出2个,组合数

#include<iostream>
#include<cstdio>
#include<cstring>
#define ll long long
using namespace std;
const int mod=998244353;
const int maxn=4100;
int c[maxn][maxn];

int main(){
    int x,y;
    cin >> x >> y;
    
    if(x<0 || y<0)  //只能沿正方向运动
        cout << -1 << endl;
    
    int n = x+y;
    for(int i=0; i<=n; i++) //初始
        c[i][0] = c[i][i] = 1;
    for(int i=2; i<=n; i++) //组合数的运算
        for(int j=1; j<=i/2; j++){ //算一半即可
            c[i][j] = (c[i-1][j] + c[i-1][j-1])%mod;
            c[i][i-j] = c[i][j];
        }
    
    cout << c[x+y][x] << endl;
    return 0;
}

这是一道典型的优化路径规划的问题,核心在于如何通过合理设置传送站的位置,最小化所有运输任务中最长的时间消耗。 ### 解题思路 #### 问题分析 题目给出 n 个城市以及 m 种运输方案 (li, ri),我们需要选择一对城市 X 和 Y 建立传送站,使得所有的运输任务完成所需的最大时间为最小值。传输过程中可以利用相邻城市的连接走一步耗时一点的方式移动,也可以直接通过传送站在选定的城市间瞬移。 --- #### 关键点解析 1. **计算原路径长度** 对于任意运输方案 `(li, ri)` 的原始时间消耗为 `|li - ri|`(假设 li ≤ ri)。如果建立了传送站 [X,Y],那么可以通过该传送站将部分距离替换为零成本转移。 2. **最优解的选择策略** 我们希望找到这样一个传送站位置 `[X, Y]`,能够尽可能多地减少最长运输路径的距离。为了简化计算过程,我们可以尝试遍历所有可能的候选站点对,并记录其带来的效果变化情况;但考虑到实际数据规模较大,因此还需要进一步思考更高效的算法设计方法。 3. **贪心思想的应用** 根据上述观察发现,对于每个给定的任务序列来说,它们各自的起点终点分布特点决定了最终结果形式——即总是会有一段连续区间成为瓶颈所在区域内的操作焦点。所以接下来我们采用排序+扫描线技巧快速确定最佳答案组合即可满足需求了。 --- #### 实现步骤 1. 将所有运输计划按左端点升序排列; 2. 初始化变量 max_time 表示当前最大时间开销、min_max_time 记录目前为止已知最少可行目标值; 3. 遍历排好序后的每一个任务 i,动态维护覆盖范围信息 s_start 和 e_end 分别代表最近一次更新过的最左侧起始位置及对应右边界终止位置;然后根据不同情形分别调整 min_max_time 数值直到结束条件达成为止: - 当前考虑新增加的一条新边完全落入已有区间的内部 -> 更新新的整体最优结果可能性。 - 如果超出了原有界限外则单独处理新增贡献量并继续寻找后续改进机会直至完整考察完毕全部候选项为止。 --- #### 时间复杂度估计 整个流程仅需 O(m log m) 主要是归功于前期预处理阶段采用了快排技术,而在线性迭代期间每次判断都只需常数级别代价故总体效率较高适合应对大规模输入场景的要求。 --- ### 示例代码框架伪代码展示 ```python def solve(n, m, tasks): # 按照 l_i 升序排列 task 列表 [(l,r)...] tasks.sort(key=lambda x:x[0]) result = float('inf') # 最优结果初始化极大值 current_max = 0 # 动态维护现有最大差值 prev_l = prev_r = None # 上次保存的有效[l',r']区间 for idx in range(len(tasks)): cur_l, cur_r = tasks[idx][0], tasks[idx][1] if not prev_l or abs(cur_l-prev_l)+abs(cur_r-prev_r)>current_max: # 若超出上次有效窗口 或 新加入者带来更大跨度差异,则重新评估全局影响 candidate_value = some_computation_logic(prev_l,prev_r,current_max) result = min(result,candidate_value) update_current_window_info() return result # 输入读取函数略... ``` ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值