超参数

在kNN算法中 k参数被封装成n_neighbors参数

之前我们都是随意的传递3,5.

究竟传什么参数最好,这就涉及机器学习非常重要的问题:超参数

超参数:运行学习机器学习算法之前,需要指定的参数

例如kNN算法的k


与超参数对应的是模型参数

模型参数:算法过程中学习的参数 


kNN算法只有超参数,没有模型参数


机器学习工程师要做的一个就是调参,就是调超参数

因为是在算法运行前需要我们运行的参数

寻找好的超参数:1.领域知识2.经验数值3.实验搜索


寻找最好的k


初始设置当前最好的准确率的值,和k

best_score = 0.0

besk_k = -1

for k in range(1,11):

    knn_clf = KNeighborsClassifier(n_neighbors=k)

    knn_clf.fit(X_train,y_train)

    score = knn_clf.score(X_test,y_test)

    if score > best_score:

        best_k = k

        best_score = score

print("best_k",best_k)

print("best_score",best_score)

我们发现最好的是4和0.991666666666667

这非常的简单

如果我们找到最好的k是10,我们有必要对10以上的数在进行搜索

因为通常来讲我们不同参数决定不同准确率,他们之间呈现连续的变化

如果我们找到最好的参数值,他在我们寻找的边界上,就意味着有更好的值在边界的外面,稍微拓展

比如如果是10我们就要8-20再一次

不要以为kNN就一个k超参数实际上还有一个超参数

我们忽略了最近的k个结点的距离


比如这个图,虽然蓝色投票获胜,但是红色的权重大

我们需要考虑距离权重

通常我们将距离倒数作为权重


红色:1 蓝色:1/3 + 1/4 =7/12

红色胜

我们考虑距离还有另一个优点


比如说有3类就可能平票

那么这时候就没办法了,考虑距离就是1

构造的参数还有一个重要的weights

默认值是uniform实际上是不考虑距离权重

有了kNN算法我们可以计算距离权重或者不计算

这个超参数就是distance还是uniform


对于我们手写数值,还是uniform和4比较高


另外引入一个话题

什么是距离

我们之前都是欧拉距离

另外还有曼哈顿距离


就是两个点在每个维度上相应的距离和


我们比较两个式子,得到推广获得


Minkowski Distance

当p=1就是欧拉距离

p=2就是欧拉距离

更大就是其他距离

获得了一个新的超参数就是p

我们对这个p来进行超参数调参


不过开根号运行速度比较慢我们可以计时

 


结果就是这样




发现即使是kNN还是有很多的超参数,其实还有更多,面对更多超参数可以用搜索策略来找到适合我们最好的超参数,事实上这种策略叫做网格搜索

超参数还存在依赖关系

我们怎么更好的一次性把我们想要的超参数全列出来?

事实上sl为我们网格搜索封装了一个函数






评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值