1.4 子空间

子空间

二维平面经常研究直线,三维空间经常研究平面,它们都是整个空间的部分空间。整个空间是向量集合,那部分空间应该是其子集,所以部分空间称为子空间。无关组是基的子集,基的线性组合可以表示整个空间,那无关组的线性组合是否可以表示子空间呢?

无关组张成子空间

二维空间中任意向量可分解为任意不共线的两个向量和,三维空间中任意向量可也分解为两个向量和:一个向量位于任意平面内,另一个向量位于平面外。那整个空间也可以分解为两个子空间的和吗?

解开空间分解的钥匙在于基!令 m m m 维空间基为 V = ( v 1 , ⋯   , v m ) V = (\mathbf{v_1},\cdots,\mathbf{v_m}) V=(v1,,vm) ,其线性组合表示的向量集合为
S ( V ) = { α 1 v 1 + ⋯ + α m v m } S(V)=\{\alpha_1\mathbf{v_1}+\cdots+\alpha_m\mathbf{v_m}\} S(V)={α1v1++αmvm}

以前都是把基作为一个整体看,现在换个角度看,世界就变了!

假设基任意分为两个互补的无关组,例如 V 1 = ( v 1 , ⋯   , v k ) V_1 = (\mathbf{v_1},\cdots,\mathbf{v_k}) V1=(v1,,vk) V 2 = ( v k + 1 , ⋯   , v m ) V_2 = (\mathbf{v_{k+1}},\cdots,\mathbf{v_m}) V2=(vk+1,,vm) k ≥ 1 且 k < m k \ge 1 \quad 且 \quad k < m k1k<m ,上式变为,
S ( V ) = { α 1 v 1 + ⋯ + α m v m } = { ( α 1 v 1 + ⋯ + α k v k ) + ( α k + 1 v k + 1 + ⋯ + α m v m ) } = { S 1 ( V 1 ) + S 2 ( V 2 ) } S(V) = \{\alpha_1\mathbf{v_1}+\cdots+\alpha_m\mathbf{v_m}\}\\ = \{(\alpha_1\mathbf{v_1} + \cdots + \alpha_k\mathbf{v_k}) + (\alpha_{k+1}\mathbf{v_{k+1}} + \cdots + \alpha_m\mathbf{v_m})\} \\ = \{S_1(V_1) + S_2(V_2)\} S(V)={α1v1++αmvm}={(α1v1++αkvk)+(αk+1vk+1++αmvm)}={S1(V1)+S2(V2)}
这两个向量组都是基的子集,所以它们是无关组。 S 1 ( V 1 ) S_1(V_1) S1(V1) 是无关组 V 1 V_1 V1 的线性组合表示的向量集合, S 2 ( V 2 ) S_2(V_2) S2(V2) 是无关组 V 2 V_2 V2 的线性组合表示的向量集合。既然基的线性组合表示的向量集合是整个空间,那基的子集线性组合表示的向量集合,也是个空间,称为子空间。

定义 子空间 基的子集线性组合表示向量的集合,也称子集张成的空间。

那子空间几何图像是什么呢?举例如下,二维空间中,假设基为: V = ( v 1 = ( 1 , 0 ) , v 2 = ( 0 , 1 ) ) V = (\mathbf{v_1}=(1,0),\mathbf{v_2}=(0,1)) V=(v1=(1,0),v2=(0,1)) 。子集只有一个向量,如 v 1 \mathbf{v_1} v1 ,其线性组合是 α v 1 \alpha\mathbf{v_1} αv1 ,表示一条直线!直线是二维平面的子空间,直线具体为 ( α , 0 ) (\alpha,0) (α,0) x x x 轴。子集 v 2 \mathbf{v_2} v2 张成的子空间是 y y y 轴。

三维空间中,假设基为: V = ( v 1 = ( 1 , 0 , 0 ) , v 2 = ( 0 , 1 , 0 ) , v 3 = ( 0 , 0 , 1 ) ) V = (\mathbf{v_1}=(1,0,0),\mathbf{v_2}=(0,1,0),\mathbf{v_3}=(0,0,1)) V=(v1=(1,0,0),v2=(0,1,0),v3=(0,0,1)) 。子集是 v 1 \mathbf{v_1} v1 时,其线性组合是 α v 1 \alpha\mathbf{v_1} αv1 ,表示一条直线!直线是三维空间的子空间,直线具体为 ( α , 0 , 0 ) (\alpha,0,0) (α,0,0) x x x 轴。子集 v 2 \mathbf{v_2} v2 张成的子空间是 y y y 轴,子集 v 3 \mathbf{v_3} v3 张成的子空间是 z z z 轴。

子集是 { v 1 , v 2 } \{\mathbf{v_1},\mathbf{v_2}\} {v1,v2} 时,其线性组合是 α v 1 + β v 2 \alpha\mathbf{v_1}+\beta\mathbf{v_2} αv1+βv2 ,表示一个平面!平面是三维空间的子空间,平面由这两个向量确定,具体为 ( α , β , 0 ) (\alpha,\beta,0) (α,β,0) x y xy xy 平面。

定义 子空间维度 无关组张成的子空间的维度等于无关组中向量的数量。

这个定义和 m m m 维空间的维度相融,因为 m m m 维空间中无关组中向量的数量是 m m m

比如三维空间中任意过原点的平面是子空间,维度是2维;二维平面中任意过原点的直线是子空间,维度是1维。

特别强调下,原点 0 \mathbf{0} 0 向量构成一个0维子空间。

定义 子空间基 子空间的基就是张成该子空间的无关组。

比如三维空间中任意过原点的平面是子空间,子空间基就是该平面内任意两个不共线的向量;二维平面中任意过原点的直线是子空间,子空间基就是该直线内任意向量。

子空间的基,如果空间的基一样,有无穷多种,也是正交基最简。

比如三维空间中,假设无关组为: V 1 = ( v 1 = ( 1 , 0 , 0 ) , v 2 = ( 0 , 1 , 0 ) ) V_1 = (\mathbf{v_1}=(1,0,0),\mathbf{v_2}=(0,1,0)) V1=(v1=(1,0,0),v2=(0,1,0)) 。其线性组合是 α v 1 + β v 2 \alpha\mathbf{v_1}+\beta\mathbf{v_2} αv1+βv2 ,表示 x y xy xy 平面,即 ( α , β , 0 ) (\alpha,\beta,0) (α,β,0) ,基是标准正交基。另一无关组为: V 2 = ( v 1 = ( 1 , 1 , 0 ) , v 2 = ( 2 , 1 , 0 ) ) V_2 = (\mathbf{v_1}=(1,1,0),\mathbf{v_2}=(2,1,0)) V2=(v1=(1,1,0),v2=(2,1,0)) 。其线性组合是 α v 1 + β v 2 \alpha\mathbf{v_1}+\beta\mathbf{v_2} αv1+βv2 ,同样表示 x y xy xy 平面,即 ( α + 2 β , α + β , 0 ) (\alpha+2\beta,\alpha+\beta,0) (α+2β,α+β,0) ,基是普通基。这两个无关组都是 x y xy xy 平面的基。

定义 无关组等价 无关组张成同一子空间。

等价无关组中向量数量等于子空间维度。这个概念是从几何上判断无关组等价,无关组向量可互相表示是从代数上判断等价。做到数形结合,才能真正理解概念。

线性空间

无关组张成的空间是线性空间,那什么是线性空间呢?是不是平面内任意直线都是线性空间,三维空间中任意直线和平面都是线性空间?不是的,必须是过原点的直线和平面才是线性空间!为什么要这么定义呢?线性空间是向量的集合,必须满足对向量进行数乘和两个向量相加后,结果向量位于原空间内,这样要求后,数学上特别容易处理。

定义 线性空间 线性空间 S S S 是向量集合,集合内向量必须满足下述两个性质:

  1. 如果向量 v ∈ S \mathbf{v} \in S vS ,则向量的任意实数乘 α v ∈ S \alpha \mathbf{v} \in S αvS
  2. 如果任意两个向量 v ∈ S \mathbf{v} \in S vS w ∈ S \mathbf{w} \in S wS ,则它们和 v + w ∈ S \mathbf{v} + \mathbf{w} \in S v+wS

上面两个性质称为线性空间的数乘和相加封闭性,即向量数乘和相加后还必须位于空间,即封闭性。

重要性质 根据线性空间的性质1,当实数为0时,线性空间必须包括 0 \mathbf{0} 0 向量。

如果两个向量 v ∈ S \mathbf{v} \in S vS w ∈ S \mathbf{w} \in S wS ,根据性质1,得 α v ∈ S \alpha\mathbf{v} \in S αvS β w ∈ S \beta\mathbf{w} \in S βwS ;再根据性质2得, α v + β w ∈ S \alpha\mathbf{v} + \beta\mathbf{w} \in S αv+βwS

向量的线性组合属于集合,由于线性组合是线性运算,所以称为线性空间。

重要性质 对任意数量向量
i f v i ∈ S ( i = 1 , ⋯   , n ) t h e n α 1 v 1 + ⋯ + α n v n ∈ S if \quad \mathbf{v_i} \in S \quad (i=1,\cdots, n) \quad then \quad \alpha_1 \mathbf{v_1} + \cdots + \alpha_n \mathbf{v_n} \in S ifviS(i=1,,n)thenα1v1++αnvnS
取任意向量组 V = ( v 1 , ⋯   , v n ) V=(\mathbf{v_1},\cdots,\mathbf{v_n}) V=(v1,,vn) ,这样向量组 V V V 线性组合所表示的所有向量构成了线性空间,记为 S ( V ) S(V) S(V) ,空间 S S S 称为由向量组 V V V 张成,向量组 V V V 称为空间 S S S 的生成向量组。

根据这个定义,当向量组取无关组或基时,就是前面定义的空间,所以前面介绍的空间都是线性空间。后面空间不特别说明,均指线性空间。

线性空间不需要定义向量内积,只需定义向量数乘和加法。定义了内积的线性空间,称为内积空间,即欧几里德空间,这是我们最熟悉的空间。

  • 6
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
在经历了一个半月的bug修复后DYHB-blog V1.4正式版发布了。此次是最为稳定的版本了,两个后台,两个自带模板,修复了目录二级域名绑定不能互访的问题和若干bug. 功能如下: 1:评论系统: (ajax 嵌套 分页)可以对音乐,日志,微博,相片进行评论,另带留言板 2:日志系统:新建页面,日志置顶,自动保存,草稿,远程图片本地化,日志分页,批量删除,批量修改作者,批量移动分类。在线投稿,以及前台快速发布。自定义关键字,自定义描述。url别名优化。 3:衔接系统:衔接以图片和文字两种方式展现,并出现在侧边栏widget中和导航条中, 4:音乐系统:程序提供两种音乐展现系统,网络地址版, 5:附件系统:程序提供两种附件格式,防盗链格式 正常格式,当然就是图片的原始格式。后台提供,swfupload批量大附件上传和普通input file表单上传,后台提供批量删除,批量移动,批量插入附件。音乐类附件,自动添加播放地址,地址如上面的音乐系统中那样。附件可以方便插入微博客,插入到投稿页面。附件提供全新系统,可以设置下载权限。自带相册,并且可以对相册进行评论,设置封面等等。全面支持下载,可以设置下载程序的所有的附件。附件路径相对,可以无缝迁移,而不用担心路径失效。提供附件更新。 6:权限系统:强大的权限系统,可以定义超级管理官,管理员,联合撰写者,注册会员和游客,并能够精确控制它们是否能够访问日志,相册,查看用户列表以及用户信息等重要资源。并能够根据不同权限人动态调整数据,如普通游客看不到隐藏日志,评论的IP,当超级管理员登陆后,能够看到。注册的用户只能在后台看到自己的日志。后台具有严格的权限,没有权限无法访问。 7:模板系统:系统提供前台模板和后台模板一键更换功能,本次发布的版本分别制作了两个前台模板和两个后台模板。DYHB-blog大量封装html代码,使得保持强大的功能同时,依然是小巧的模板系统,功能强大,然后然后所有数据显示即view/default下的php文件的体积为22.4 KB,为国内博客系统中最为小巧的体积,整个模板也才58.3 K。同时后台模版体积比一般的博客系统的前台模版体积都小巧,小巧与不平凡的功能。将丰富的widget封装,只有几行代码,即输出完美的widget. 同时,程序支持博客外观设置,自定义背景和页眉。 8:手机功能:手机访问博客,随时随地记录心情,发布日志日志,浏览标签,浏览相册,查看相片,自动GD生成缩略图,减少网络数据传输,并且在后台自由设置。可以在手机设置博客信息,修改用户信息。 9:设置系统:为了最大化提供程序自由性,系统炒作上百个可控的开关与设置,能够让用户随时控制。比如,我想登录跳转后台,或者前一页,或者首页等等。 10:cms,bbs,blog一体化:DYHB-blog融入了轻量级的cms,bbs功能,通过后台可以启动,轻松打造成bbs,cms,or blog 11:插件功能:程序支持插件扩展,完美无缝扩展系统,12:充分取出数据库的信息:前台几乎把后端数据库的所有信息都运用了,你可以在前台查看引用,查看用户列表,查看用户信息,查看相片,查看相册,查看留言,查看音乐,播放音乐。下载系统的所有附件。 13:多级分类:还纠结单调分类吗?DYHB-blog与wordpress同样支持多级分类。 14:seo优化:定义日志关键字,日志描述,相片关键字,自定义分类关键字,分类url,日志url等等,强大的seo控制 15:数据调用:提供数据调用。 16:幻灯片:提供幻灯片 17:预置广告位:轻松在自己的系统插入广告 18:灵活的widgets:程序最大支持4组widget,widgets支持排序,自定义名字,是否隐藏等等 19:自定义url衔接,伪静态:程序提供和wordpress一样强大的url自定义设置,可以让你的博客更易于收录,想这样, 分类:catecogyr是系统设置的分类前缀,可以自定义,teck第一级分类,php是teck的二级分类。 20:静态化:DYHB-blog是php独立博客阵营极少支持静态化的博客系统,静态化的好处利于搜录和减轻服务器访问压力。支持静态化导航条,静态化首页,静态化首页列表,静态化分类列表,静态化日志,并且支持静态化评论分页和日志分页。 21:自动摘要,自定义导航条排序,日志传统与列表展示:好了

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值