矩阵论(3)——子空间

 


3 子空间

类似集合里面子集的概念,但是更复杂一点。

 

3.1 子空间定义

设V是数域F上的线性空间,W是V的子集,若对W中的任意元素\alpha ,\beta,及k\in F,按V中的加法和数乘有:

  1. \alpha +\beta \in W;

  2. k\alpha \in W.

则W也是数域F上的线性空间,称W为V的线性子空间(简称子空间)。

  • 1)由单个零元素组成的子集{O}是线性子空间;

  • 2)线性空间V本身也是自己的线性子空间;

{O}与V是称为V的平凡子空间,dim{O}=0(因为O是线性相关的,又找不到线性无关的向量)。

 

3.2 常见的子空间

3.2.1

设A是一给定的m\times n实矩阵,记

N(A) \triangleq\left\{x \in \mathbb{R}^{n} | A x=0\right\}                          (1)

R(A) \triangleq\left\{A x | x \in \mathbb{R}^{n}\right\}                                 (2)

则N(A)是\mathbb{R}^{n}的子空间,称为A的零空间

则R(A)是\mathbb{R}^{m}的子空间,称为A的列空间

\begin{array}{l}{\operatorname{dim} N(A)=n-\operatorname{rank} A=n-r} \\ {\operatorname{dim} R(A)=\operatorname{rank} A=r}\end{array}

\operatorname{rank} A表示矩阵A的秩。

看懂下面这个例题,就很好理解这两个概念了。

例1:

1)方程组Ax=0的基础解系就是零空间N(A)的基

因为

所以rank(A)=2,所以dimN(A)=4-2=2

解得方程组Ax=0的基础解系:

所以x_{1},x_{2}是N(A)的基,N(A)=\operatorname{span}\left\{x_{1}, x_{2}\right\}

2)因为rank(A)=2,所以dimR(A)=2

由上矩阵化简结果可知,是矩阵A列向量的加大线性无关组。

所以A_{1},A_{2}是N(A)的基,R(A)=\operatorname{span}\left\{A_{1},A_{2}\right\}

3.2.2

\left\{\alpha_{1}, \quad \alpha_{2}, \cdots, \quad \alpha_{r}\right\}是线性空间V的一向量组,记

\operatorname{span}\left\{\alpha_{1}, \alpha_{2}, \cdots, \alpha_{r}\right\}=\left\{\alpha=\sum_{i=1}^{r} k_{i} \alpha_{i} | k_{1}, \quad k_{2}, \cdots, k_{r} \in F\right\}                                  (3)

\operatorname{span}\left\{\alpha_{1}, \alpha_{2}, \cdots, \alpha_{r}\right\}是V的子空间,称为由\left\{\alpha_{1}, \quad \alpha_{2}, \cdots, \quad \alpha_{r}\right\}张成的子空间

上面这个记号解决了抽象线性空间中子集(即子空间)的描述

 

1)若\left\{\alpha_{1}, \quad \alpha_{2}, \cdots, \quad \alpha_{m}\right\}是子空间W的基,则有W=\operatorname{span}\left\{\alpha_{1}, \alpha_{2}, \cdots, \alpha_{m}\right\}         (4)

2)设A \in \mathbb{R}^{m \times n},记A=\left[A_{1}, \quad A_{2}, \ldots, A_{n}\right],其中A_{i} \in \mathbb{R}^{m}, \quad i=1,2, \cdots, n

      则有\begin{aligned} \boldsymbol{R}(\boldsymbol{A}) &=\left\{A x | x \in \mathbb{R}^{n}\right\} =\operatorname{span}\left\{A_{1}, \quad A_{2}, \cdots, A_{n}\right\} \end{aligned}                                          (5)

这里不是太懂,个人理解如下:A_{i}是矩阵第i列,一个\mathbb{R}^{m}的向量,x是一个\mathbb{R}^{n}的向量,而Ax展开就是x_{1}A_{1}+x_{2}A_{2}+...+x_{n}A_{n},就是张成的子空间的表达式,如公式(3)所示,所以就等于\left\{A_{1}, \quad A_{2}, \cdots, A _{n}\right\}张成的一个子空间,记为\operatorname{span}\left\{A_{1}, A_{2}, \cdots, A_{n}\right\}

极大线性无关组的个数等于矩阵的秩,R的维数等于矩阵的秩。

 

3.3 基扩张定理

定理:\left\{\alpha_{1}, \quad \alpha_{2}, \cdots, \quad \alpha_{r}\right\}V^{n}中一组线性无关向量,则存在V^{n}中n-r个向量\alpha_{r+1}, \quad \alpha_{r+2}, \cdots, \quad \alpha_{n} ,使得

\left\{\alpha_{1}, \quad \alpha_{2}, \cdots, \alpha_{r}, \alpha_{r+1}, \quad \alpha_{r+2}, \cdots, \quad \alpha_{n}\right\}构成V^{n}的基。

通俗理解就是:通过少数线性无关向量,可以扩张成一组空间的基。

 

3.4 和空间与交空间

W_{1}W_{2}均是线性空间V^{n}的子空间。

  • W_{1}\cup W_{2}不是线性空间V^{n}的子空间;
  • W_{1}\cap W_{2}是线性空间V^{n}的子空间。

并运算得到结果并不是子空间,所以引出了一个新的概念:和空间

3.4.1 定义

定义:设W_{1}W_{2}均是线性空间V^{n}的子空间,令(W1和W2中间是“且”字)

\begin{array}{l}{\text { 1) } W_{1} \cap W_{2}=\left\{\alpha \in V | \alpha \in W_{1} \mathbb{B} \alpha \in W_{2}\right\}} \\ {\text { 2) } W_{1}+W_{2}=\left\{\alpha \in V | \alpha=\alpha_{1}+\alpha_{2}, \quad \alpha_{1} \in W_{1}, \alpha_{2} \in W_{2}\right\}}\end{array} 

 称W_{1}\cap W_{2}W_{1}W_{2}交空间

W_{1}+ W_{2}W_{1}W_{2}和空间

注:1)W_{1}+ W_{2}是V的子空间;

        2)设W_{1}=\operatorname{span}\left\{\alpha_{1}, \ldots, \alpha_{r}\right\}W_{2}=\operatorname{span}\left\{\beta_{1}, \ldots, \beta_{m}\right\},则有W_{1}+W_{2}=\operatorname{span}\left\{\alpha_{1}, \ldots, \alpha_{r}, \beta_{1}, \ldots, \beta_{m}\right\}

3.4.2 维数公式

1) 设W_{1}W_{2}均是线性空间V^{n}的子空间,则有\operatorname{dim}\left(W_{1}+W_{2}\right)+\operatorname{dim}\left(W_{1} \cap W_{2}\right)=\operatorname{dim}\left(W_{1}\right)+\operatorname{dim}\left(W_{2}\right)

2) 和空间W_{1}+ W_{2}中的向量一定可以分解成两个向量之和,其中一个向量属于W_{1},另一个向量属于W_{2},即

\begin{array}{l}{\forall \xi \in W_{1}+W_{2}, \exists \alpha_{1} \in W_{1}, \quad \alpha_{2} \in W_{2}} \\ {\text { s.t. } \xi=\alpha_{1}+\alpha_{2}}\end{array}

注:这种分解不是唯一,如果要唯一就是下一节提出的概念——直和。

 

3.5 直和

3.5.1 定义

W_{1}+ W_{2}中的任一向量只能唯一地分解为W_{1}中的一个向量与W_{2}中的一个向量之和,则称W_{1}+ W_{2}W_{1}W_{2}直和,记为W_{1} \oplus W_{2}。(公式1)W1和W2中间是“且”字

\begin{array}{l}{\text { 1) } W_{1} \cap W_{2}=\left\{\alpha \in V | \alpha \in W_{1} \cap \alpha \in W_{2}\right\}} \\ {\text { 2) } W_{1}+W_{2}=\left\{\alpha \in V | \alpha=\alpha_{1}+\alpha_{2}, \quad \alpha_{1} \in W_{1}, \quad \alpha_{2} \in W_{2}\right\}}\end{array}

 称W_{1}\cap W_{2}W_{1}W_{2}交空间

W_{1}+ W_{2}W_{1}W_{2}和空间

3.5.2 直和等价条件

\begin{array}{l}{\text { 1) } W_{1}+W_{2}=W_{1} \oplus W_{2}} \\ {\text { 2) } W_{1} \cap W_{2}=\{O\}} \\ {\text { 3) } \operatorname{dim}\left(W_{1}+W_{2}\right)=\operatorname{dim}\left(W_{1}\right)+\operatorname{dim}\left(W_{2}\right)}\end{array}

\text { 4) } \boldsymbol{O}=\alpha_{1}+\alpha_{2}, \quad \alpha_{1} \in W_{1}, \quad \alpha_{2} \in W_{2},则有\alpha_{1}=\boldsymbol{O}, \quad \alpha_{2}=\boldsymbol{O} 

 

 

 

  • 13
    点赞
  • 56
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值