1.5 基的判断

基的判断

m m m 维空间中任意 m m m 个向量的向量组 V = ( v 1 , ⋯   , v m ) V = (\mathbf{v_1},\cdots,\mathbf{v_m}) V=(v1,,vm) 如何判断其是否为基,这些线性代数一个核心问题。可以从几何和代数两个方面考虑。

几何上,向量组张成整个空间,所以能张成整个空间的向量组就是基。具体判断(或想象,因为三维以上空间只能想象)如下,向量组有 m m m 个向量,可以向一个空集每次只增加一个向量,集合每增加一个向量后,判断集合内向量组是否能张成“完整”子空间,如果不能,则不是基。比如第一个向量肯定可以张成完整的一维子空间(直线);增加第二个向量时,如果该向量与第一个向量共线,则集合不能张成“完整”二维子空间(平面),则向量组不是基,判断结束。如果该向量与第一个向量不共线,则继续增加一个向量。第三个向量如与前两个共面,则集合不能张成“完整”三维子空间,则向量组不是基,判断结束。如不共面,则继续增加一个向量,依次进行,直到取完所有向量。只有当最后一个向量加入后,能张成“完整”空间,向量组才是基。

基按照上述方式看的话,每次增加的向量都不位于集合所处的子空间内,有“张角”, m m m 个向量完整地张开了整个空间,广义体积不为0!如果 m m m 个向量不是基,则必有某个向量“躺在”集合所处的子空间内,不能完整地张开整个空间,广义体积为0。 这种几何图像对后面理解矩阵可逆和行列式非常关键!

这种方法只适合二维空间,三维空间必须借助计算机辅助绘图,才能观察到,但思想很重要。

代数上,通过判断向量组表示 0 \mathbf{0} 0 向量时,是否只有唯一全0表示,如果是,则是基,否则非基。这最后会归结于求线性方程的零解。 m m m 维空间向量相等需每个分量相等,每个分量可得到一个方程, m m m 个分量得到 m m m 个方程。 m m m 个向量,所以表示系数有 m m m 个,是 m m m 元方程。低元方程可用初中学过的变量代入消元法求解,高元方程用高斯消元法求解,后面有专门章节介绍。代数法的好处是可以判断任意维度空间的向量组是否为基,代数是工具。线性代数很多问题最后都要归结于计算问题,计算只是工具,几何才是灵魂。

m m m 维空间中 m m m 个向量的向量组 V = ( v 1 , ⋯   , v m ) V = (\mathbf{v_1},\cdots,\mathbf{v_m}) V=(v1,,vm) ,其线性组合表示 0 \mathbf{0} 0 向量为
0 = α 1 v 1 + ⋯ + α m v m \mathbf{0} =\alpha_1\mathbf{v_1}+\cdots+\alpha_m\mathbf{v_m} 0=α1v1++αmvm
这时必须把向量拆开,看到每个分量才能解方程。令 v i = ( V i 1 , ⋯   , V i j , ⋯   , V i m ) \mathbf{v_i} = (\mathbf{V_{i1}},\cdots,\mathbf{V_{ij}},\cdots,\mathbf{V_{im}}) vi=(Vi1,,Vij,,Vim) ,即第 j j j 个分量为 V i j \mathbf{V_{ij}} Vij 。根据向量数乘、加法和相等规则,可得
α 1 V 11 + ⋯ + α i V i 1 + ⋯ + α m V m 1 = 0 α 1 V 12 + ⋯ + α i V i 2 + ⋯ + α m V m 2 = 0 ⋮ α 1 V 1 m + ⋯ + α i V i m + ⋯ + α m V m m = 0 \alpha_1\mathbf{V_{11}}+\cdots+\alpha_i\mathbf{V_{i1}}+\cdots+\alpha_m\mathbf{V_{m1}} = 0 \\ \alpha_1\mathbf{V_{12}}+\cdots+\alpha_i\mathbf{V_{i2}}+\cdots+\alpha_m\mathbf{V_{m2}} = 0 \\ \vdots \\ \alpha_1\mathbf{V_{1m}}+\cdots+\alpha_i\mathbf{V_{im}}+\cdots+\alpha_m\mathbf{V_{mm}} = 0 α1V11++αiVi1++αmVm1=0α1V12++αiVi2++αmVm2=0α1V1m++αiVim++αmVmm=0
m m m 个方程 m m m 个未知数。注意与未知数 α i \alpha_i αi 相乘的系数只有向量 v i \mathbf{v_i} vi 的分量。

例如,二维空间中,向量组 V = ( v 1 , v 2 ) , v 1 = ( 1 , 2 ) \mathbf{V} = (\mathbf{v_1},\mathbf{v_2}), \mathbf{v_1} = (1,2) V=(v1,v2),v1=(1,2) v 2 = ( 3 , 4 ) \mathbf{v_2} = (3,4) v2=(3,4) ,对应方程为
1 α 1 + 3 α 2 = 0 2 α 1 + 4 α 2 = 0 1\alpha_1+3\alpha_2 = 0 \\ 2\alpha_1+4\alpha_2 = 0 \\ 1α1+3α2=02α1+4α2=0

只有唯一0解,向量组是基。

例如,三维空间中,向量组 V = ( v 1 , v 2 , v 3 ) , v 1 = ( 1 , 2 , 3 ) \mathbf{V} = (\mathbf{v_1},\mathbf{v_2},\mathbf{v_3}), \mathbf{v_1} = (1,2,3) V=(v1,v2,v3),v1=(1,2,3) v 2 = ( 4 , 5 , 6 ) \mathbf{v_2} = (4,5,6) v2=(4,5,6) v 3 = ( 10 , 14 , 18 ) \mathbf{v_3} = (10,14,18) v3=(10,14,18) 对应方程为
1 α 1 + 4 α 2 + 10 α 3 = 0 2 α 1 + 5 α 2 + 14 α 3 = 0 3 α 1 + 6 α 2 + 18 α 3 = 0 1\alpha_1+4\alpha_2+10\alpha_3 = 0 \\ 2\alpha_1+5\alpha_2+14\alpha_3 = 0 \\ 3\alpha_1+6\alpha_2+18\alpha_3 = 0 1α1+4α2+10α3=02α1+5α2+14α3=03α1+6α2+18α3=0

有非0解 ( 2 , 2 , − 1 ) (2,2,-1) (2,2,1) ,向量组不是基。

无关组是基的子集,判断 n < m n < m n<m 个向量是否为无关组,方法完全相同!几何上,只有整个向量组能张成“完整”子空间(“完整”子空间维度等于向量数量),向量组才是无关组。代数上,通过判断向量组表示 0 \mathbf{0} 0 向量时,是否只有唯一全0表示,只不过未知数只有 n n n 个。

例如,三维空间中,向量组 v 1 = ( 1 , 2 , 3 ) \mathbf{v_1} = (1,2,3) v1=(1,2,3) v 2 = ( 4 , 5 , 6 ) \mathbf{v_2} = (4,5,6) v2=(4,5,6) 对应方程为
1 α 1 + 4 α 2 = 0 2 α 1 + 5 α 2 = 0 3 α 1 + 6 α 2 = 0 1\alpha_1+4\alpha_2 = 0 \\2\alpha_1+5\alpha_2 = 0 \\3\alpha_1+6\alpha_2 = 0 1α1+4α2=02α1+5α2=03α1+6α2=0

只有唯一0解,向量组是无关组。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值