2.1 矩阵的引入

矩阵及线性变换

以向量为工具,研究向量合成即向量组线性组合,核心概念是线性空间和基。这种方法的优点是具有极强的几何图像,很直观,是理解线性代数的基础。但也有明显的缺点,一是表达上不简洁,每次都需要写出向量组中每个向量和每个表示系数,表达不简洁不利于数学的发展,思维的提高,所以需要把向量组和表示系数组作为一个整体考虑;二是计算上不方便,判断向量组是否为基、计算正交补空间和向量投影这几个线性代数基本问题,都需要深入到向量组中每个向量的每个分量,向量为工具,向量是作为一个整体,不方便看到分量,不利于计算,所以需要解剖向量组,深入到每个分量。这两个要求,看似矛盾,一个是要把向量组作为整体,一个是要深入到每个向量的每个分量,矩阵作为工具,可以满足这两个要求,达到完美结合!矩阵缺点是几何图像被掩盖了,十分不直观,高度抽象,难以理解,学习难度大。所以学习线性代数,需要结合向量和矩阵,做到数形结合,矩阵是代数,是工具,向量是几何,是灵魂,工具反过来又会促进思维的提高,两者相辅相成,互相促进。看到矩阵就要想到向量,看到几何图像。

矩阵的引入

矩阵是把向量组作为一个整体研究向量组线性组合,再一次观察向量组线性组合, a 1 v 1 + ⋯ + a n v n a_1 \mathbf{v_1} + \cdots + a_n \mathbf{v_n} a1v1++anvn 为向量组 V = ( v 1 , ⋯   , v n ) \mathbf{V}=(\mathbf{v_1},\cdots,\mathbf{v_n}) V=(v1,,vn) 线性组合,实数组 a = ( a 1 , ⋯   , a n ) \mathbf{a} = (a_1,\cdots, a_n) a(a1,,an) 为表示系数组。把向量组作为整体,此时 V \mathbf{V} V 就是矩阵,作为整体时,组内每个向量的顺序很重要,如同向量的分量顺序很重要,向量组相同,但顺序不同的矩阵是不同的矩阵。表示系数组作为一个整体, a \mathbf{a} a 可以看作 n n n 维空间中的向量。线性组合表达式为 V a V\mathbf{a} Va ,十分简洁。按照线性代数的习惯,任意矩阵用大写字母 A A A 表示,任意向量用小写字母 x \mathbf{x} x 表示,故线性组合为 A x A\mathbf{x} Ax ,看到这个表达式就要想到向量组线性组合,几何图像是向量合成。

定义 矩阵 有序向量组的集合, A = [ a 1 , a 2 , ⋯   , a n ] A = \left[ \mathbf{a_1},\mathbf{a_2},\cdots,\mathbf{a_n} \right] A=[a1,a2,,an] a i \mathbf{a_i} ai 是矩阵 A A A 的第 i i i 个向量,也称矩阵的第 i i i 列。

定义 矩阵乘以向量 矩阵向量组的线性组合,表示系数组是向量。
A x = x 1 a 1 + x 2 a 2 + ⋯ + x n a n A = [ a 1 , a 2 , ⋯   , a n ] x = ( x 1 , x 2 , ⋯   , x n ) A\mathbf{x} = x_1\mathbf{a_1}+x_2\mathbf{a_2}+\cdots+x_n\mathbf{a_n} \\ A = \left[ \mathbf{a_1},\mathbf{a_2},\cdots,\mathbf{a_n} \right] \\ \mathbf{x} = ({x_1},{x_2},\cdots,{x_n}) Ax=x1a1+x2a2++xnanA=[a1,a2,,an]x=(x1,x2,,xn)
a i \mathbf{a_i} ai 是矩阵 A A A 的第 i i i 个向量, x i {x_i} xi 是向量 x \mathbf{x} x 的第 i i i 个分量。矩阵用中括号 [ ] \left[ \right] [] 围起向量,向量用小括号 ( ) \left( \right) () 围起数。

A x A\mathbf{x} Ax 称矩阵乘以向量,借鉴了代数语言。

书写矩阵时,矩阵排成二维表格。比如 a 1 = ( 0 , 1 ) \mathbf{a_1} = (0,1) a1=(0,1) a 2 = ( 2 , 3 ) \mathbf{a_2} = (2,3) a2=(2,3) ,矩阵 A A A 写为
A = [ 0 2 1 3 ] A = \left[ \begin{matrix} 0 & 2 \\ 1 & 3 \end{matrix} \right] A=[0123]
比如 a 1 = ( 0 , 1 , 2 ) \mathbf{a_1} = (0,1,2) a1=(0,1,2) a 2 = ( 3 , 4 , 5 ) \mathbf{a_2} = (3,4,5) a2=(3,4,5) ,矩阵 A A A 写为
A = [ 0 3 1 4 2 5 ] A = \left[ \begin{matrix} 0 & 3 \\ 1 & 4 \\ 2 & 5 \\ \end{matrix} \right] A=012345
矩阵排成二维表格时,第 i i i 个向量 a i \mathbf{a_i} ai 排成一列,所以也称列向量。矩阵看到了每个向量的每个分量,同时又把所有向量作为一个有序整体。

当向量 x = ( 1 , 2 ) \mathbf{x} = (1,2) x=(1,2) 时,
A x = [ 0 3 1 4 2 5 ] ( 1 , 2 ) = 1 [ 0 1 2 ] + 2 [ 3 4 5 ] = [ 0 ∗ 1 + 3 ∗ 2 1 ∗ 1 + 4 ∗ 2 2 ∗ 1 + 5 ∗ 2 ] = [ 6 9 12 ] A\mathbf{x} = \left[ \begin{matrix} 0 & 3 \\ 1 & 4 \\ 2 & 5 \\ \end{matrix} \right] (1,2) = 1\left[ \begin{matrix} 0 \\ 1 \\ 2 \\ \end{matrix} \right] +2\left[ \begin{matrix} 3 \\ 4 \\ 5 \\ \end{matrix} \right] =\left[ \begin{matrix} 0*1+3*2 \\ 1*1+4*2 \\ 2*1+5*2 \\ \end{matrix} \right] =\left[ \begin{matrix} 6 \\ 9 \\ 12 \\ \end{matrix} \right] Ax=012345(1,2)=1012+2345=01+3211+4221+52=6912
为了便于观察和记忆,中间计算过程把向量写成列的形式,并用中括号围起。

矩阵 A A A 中的向量是 m m m 维向量,有 n n n 个向量时,矩阵形状为 m × n m\times n m×n ,称 m m m n n n 列矩阵。

重要性质 m m m n n n 列矩阵只能与 n n n 维向量相乘。

因为向量组线性组合中,组合系数的数量必须等于向量的数量。

  • 2
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值