2.3 线性变换引入

线性变换

矩阵乘以向量 A x = y A\mathbf{x}=\mathbf{y} Ax=y ,可以看成函数,函数输入是向量 x \mathbf{x} x ,输出是向量 y \mathbf{y} y 。线性代数把函数看作变换,向量 x \mathbf{x} x 变换成向量 y \mathbf{y} y ,矩阵 A A A 称为变换矩阵,变换矩阵作为一个整体。 m m m n n n 列矩阵 A A A 记为 A m n A_{mn} Amn ,把 n n n 维向量变换维 m m m 维向量, m 、 n m、n mn 是任意自然数。 m m m 维向量记为 x m \mathbf{x_m} xm ,这样写的好处是可以看到维度。

定义 线性变换 设 V n V_n Vn , U m U_m Um 分别是 n n n 维和 m m m 维线性空间, T T T 是一个从 V n V_n Vn U m U_m Um 的映射,如果映射 T T T 满足:

  1. 对任意 v , w ∈ V n \mathbf{v}, \mathbf{w}\in V_n v,wVn ,满足 T ( v + w ) = T ( v ) + T ( w ) T(\mathbf{v}+\mathbf{w}) = T(\mathbf{v}) + T(\mathbf{w}) T(v+w)=T(v)+T(w)

  2. 对任意 v ∈ V n , λ ∈ R \mathbf{v}\in V_n,\lambda \in R vVn,λR ,满足 T ( λ v ) = λ T ( v ) T(\lambda\mathbf{v}) = \lambda T(\mathbf{v}) T(λv)=λT(v)

    T T T 称为从 V n V_n Vn U m U_m Um 的线性映射或线性变换。

矩阵变换满足数乘和分配率 A ( α v + β w ) = α A v + β A w A(\alpha\mathbf{v}+\beta\mathbf{w}) = \alpha A\mathbf{v} + \beta A\mathbf{w} A(αv+βw)=αAv+βAw ,显然满足上面两个条件,所以是线性变换。物理意义是向量组线性组合( α v + β w \alpha\mathbf{v}+\beta\mathbf{w} αv+βw )的变换等于变换向量组 ( A v , A w A\mathbf{v}, A\mathbf{w} Av,Aw )的线性组合。由于这个性质,只需要搞清楚基的变换,就可以得出任意向量的变换。

重要性质 令变换矩阵 A m n A_{mn} Amn n n n 维空间中基 V = ( v 1 , ⋯   , v n ) V = (\mathbf{v_1},\cdots,\mathbf{v_n}) V=(v1,,vn) ,变换为 m m m 维空间中 n n n 个向量 ( w 1 = A v 1 , ⋯   , w n = A v n ) (\mathbf{w_1}=A\mathbf{v_1},\cdots,\mathbf{w_n}=A\mathbf{v_n}) (w1=Av1,,wn=Avn) ,则 n n n 维空间中任意向量 α 1 v 1 + ⋯ + α n v n \alpha_1\mathbf{v_1}+\cdots+\alpha_n\mathbf{v_n} α1v1++αnvn ,变换为 m m m 维空间的向量
A ( α 1 v 1 + ⋯ + α n v n ) = α 1 A v 1 + ⋯ + α n A v n = α 1 w 1 + ⋯ + α n w n A(\alpha_1\mathbf{v_1}+\cdots+\alpha_n\mathbf{v_n}) = \alpha_1A\mathbf{v_1}+\cdots+\alpha_nA\mathbf{v_n} \\ = \alpha_1\mathbf{w_1}+\cdots+\alpha_n\mathbf{w_n} A(α1v1++αnvn)=α1Av1++αnAvn=α1w1++αnwn

如何理解这个关系呢?我们只需要知道空间的基及其对应的变换向量组,则对任意向量,只需其基的表示系数组,就可以获得变换向量,即基变换向量组的线性组合,不需要知道变换矩阵本身!也就是说,变换矩阵由基变换关系 ( w 1 = A v 1 , ⋯   , w n = A v n ) (\mathbf{w_1}=A\mathbf{v_1},\cdots,\mathbf{w_n}=A\mathbf{v_n}) (w1=Av1,,wn=Avn) 唯一决定;或者说,由基变换关系 ( w 1 = A v 1 , ⋯   , w n = A v n ) (\mathbf{w_1}=A\mathbf{v_1},\cdots,\mathbf{w_n}=A\mathbf{v_n}) (w1=Av1,,wn=Avn) 可以得到变换矩阵。基变换关系是理解矩阵的核心!

重要性质 线性变换把线性空间变换为线性空间。

假设线性空间 S ( V ) S(V) S(V) 由向量组 V = ( v 1 , ⋯   , v n ) V = (\mathbf{v_1},\cdots,\mathbf{v_n}) V=(v1,,vn) 张成,则矩阵 A A A 变换后,向量组 V V V 变换成向量组 W = ( A v 1 , ⋯   , A v n ) W=(A\mathbf{v_1},\cdots,A\mathbf{v_n}) W=(Av1,,Avn) ,则变换后的空间由向量组 W W W 张成。

如果向量组 V V V 是无关组,变换后的向量组 W W W 一般来说是相关组,甚至可能都变换为 0 \mathbf{0} 0 向量。只有变换矩阵 A A A 的向量组是无关组时,向量组 W W W 才会是无关组。

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值